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Abstract— Input-to-State Stability (ISS) and its many deriva-
tives have proved to be extremely useful in the analysis and
design of robustly stable nonlinear systems. In this paper, we
present a generalization of ISS that subsumes several ISS-type
properties and discuss cases where this generalization may fail.

Index Terms— Input-to-State Stability, Input-to-Output Sta-
bility, Lyapunov methods, Stability with respect to Two Mea-
sures

I. INTRODUCTION

The Input-to-State Stability (ISS) framework introduced
by Sontag in [18] has proven to be among the most successful
paradigms for simultaneously analyzing both input-output
as well as internal stability for nonlinear systems. Recently,
Sontag [21] presented a comprehensive overview of the state-
of-the-art of ISS including sample applications. Of particular
interest is the unification of several ISS-type results as
suggested in [8] and [21, Section 10]. In this paper, we will
present initial results towards such a unification.

Consider the system

d

dt

x(t) = f(x(t), u(t)), x(0) = x (1)

where x 2 G ⇢ Rn and u 2 Rm. In what follows, we
denote by U the set of admissible (measurable and essentially
bounded) input functions. Note that, by a slight abuse of
notation, we will generally use u 2 Rm and u 2 U where u

being a vector or function, respectively, will be clear from
context. We denote the essential supremum of the function
u 2 U by ||u||1. We denote solutions to (1) by � : R�0⇥G⇥
U ! Rn. In what follows, we make the standing assumptions
that f(·, ·) is locally Lipschitz and that system (1) is forward
complete on G; i.e., for every x 2 G and u 2 U , solutions
�(t, x, u) exist and remain in G for all t � 0.

Following on from the original notion of Input-to-State
Stability (ISS) [18], many similar notions have been pro-
posed providing different relationships between inputs, out-
puts, and states such as Input-to-Output Stability [25],
Output-to-State Stability [24], and Input-Output-to-State Sta-
bility [12]. These various notions frequently have similar
properties, such as Lyapunov characterizations, that are tai-
lored to the specific relationships posited by the differing
properties.
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With the aim of unifying and generalizing many of
these notions, we propose the following notion of multiple-
measure input stability:

Definition 1: Let !
i

: G ! R�0, i = 1, 2 be continuous,
positive semi-definite functions and let !3 : G ! Rp be
continuous. System (1) is said to be multiple-measure input
stable (MMIS) if it is forward complete on G and there exist
functions � 2 KL and ⇢, � 2 K such that

!1(�(t, x, u))  max {�(!2(x), t),

⇢(||!3(�(t, x, u))||1), �(||u||1)} , 8t � 0. (2)

The classical definition of ISS is covered by Definition 1
by taking !1(·) = !2(·) = | · | and !3(·) ⌘ 0. Table I
describes how several ISS-type properties can be seen to be
special cases of Definition 1 where for certain properties the
system (1) is augmented by an output

y(t) = h(�(t, x, u)); h : Rn ! Rp

. (3)

Remark 1: Definition 1 generalizes the notion of Input-
Output-to-State Stability (IOSS) as proposed in [24] and
characterized in [12]. In [26], Sontag and Wang proposed
a generalization of IOSS similar to the above definition of
MMIS where !1(·) = |h(·)|, !2(·) = | · |A (distance to
a closed set A), and !3(·) = k(·) and the functions h(·)
and k(·) define regulated and measured outputs, respectively.
We note that, in contrast to [26], the MMIS measurement
functions need not satisfy the properties of a norm and may
only be defined on a subset G ⇢ Rn.

An alternative to Definition 1 would be to replace the
essential supremum norm on the trajectory with a pointwise,
rather than functional, norm; for example, let !3 : G ! R�0

be a continuous, positive semi-definite function, similar to
!1(·) and !2(·), then an alternate definition of MMIS is

!1(�(t, x, u))  max {�(!2(x), t),

⇢(!3(�(t, x, u))), �(||u||1)} , 8t � 0. (4)

A concept similar to MMIS was studied in [8] for systems
without inputs. In particular, [8] considered a notion of
measurement-to-error stability for the differential inclusion

ẋ 2 F (x)

augmented by a measurement function of the state, w(t) =

g(�(t, x)), and an error function of the state, y(t) =

h(�(t, x)), where g, h : Rn ! Rp are continuous functions.
This is a special case of Definition 1 where �(s) ⌘ 0,
!1(x) = |h(x)|, and !3(x) = |g(x)|. Note that, similar to
Definition 1, [8] allows an arbitrary measurement function
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TABLE I
SPECIAL CASES OF MMIS RECOVERING ISS-TYPE ESTIMATES.

Property Measurement / Gain Functions
Input-to-State Stability (ISS) !1(·) = !2(·) = | · |, !3(·) ⌘ 0
Input-to-Output Stability (IOS) !1(·) = |h(·)|, !2(·) = | · |, !3 ⌘ 0
Output-to-State Stability (OSS) !1(·) = !2(·) = | · |, !3(·) = h(·), �(·) ⌘ 0
Input-Output-to-State Stability (IOSS) !1(·) = !2(·) = | · |, !3(·) = h(·)
State-Independent Input-Output Stability !1(·) = !2(·) = |h(·)|, !3(·) ⌘ 0

of the initial condition, with the slightly more restrictive
condition that [8] requires a continuous and proper measure
of the initial condition, while Definition 1 only requires
continuity and positive semidefiniteness.

In [8], the above stability notion was termed Measurement-
to-Error Stability or Stability in Three Measures. The nomen-
clature Input Measurement to Error Stability (IMES) was
proposed for the relationship (2) with measurement and error
signals as defined in the previous paragraph. We prefer the
terminology of Multiple-Measure Input Stability as it avoids
a priori assigning particular meanings, such as measurement
or error signals, to the functions !1 and !3.

In Table I we note that two important properties – Input-to-
State Stability (ISS), and State-Independent Input-to-Output
Stability (SI-IOS) [25] – both arise via the consideration of
!1 = !2 and !3(·) ⌘ 0. We will refer to this property
as Input-to-State Stability with respect to !, or for brevity,
!ISS.

Definition 2: Let ! : G ! R�0 be a continuous, positive
semidefinite function. System (1) is said to be Input-to-State
Stable with respect to ! (!ISS ) if it is forward complete on
G and there exist functions � 2 KL and � 2 K such that

!(�(t, x, u))  max {�(!(x), t), �(||u||1)} , 8t � 0. (5)

We observe that, as with the standard notion of ISS, the
above definition is qualitatively equivalent to an additive-
formulation of !ISS

!(�(t, x, u))  ˆ

�(!(x), t) + �̂(||u||1), 8t � 0. (6)

ISS with respect to ! clearly subsumes ISS and SI-
IOS. Furthermore, we note that this also covers local or
partial-state versions of these properties as captured by the
arbitrary domain G ✓ Rn. In addition, set-stability versions
are also covered by allowing the measurement function !

to be defined as the distance to a (closed) set as well as
stability of a prescribed motion. This includes a weak form of
incremental ISS [1] where the input-dependent bound is the
essential supremum of both inputs rather than the difference
between the two inputs.

Our ultimate aim is similar to that in [8], namely an
attempt to unify IOS and IOSS notions, but from a different
starting point. The authors of [8] considered systems without
inputs and obtained an appropriate lower-semicontinuous
Lyapunov-like function. Herein, we consider systems with-
out measurements (as defined in [8]) and obtain a smooth
Lyapunov-like function. Deriving a smooth Lyapunov func-
tion for MMIS remains an open problem.

This paper is organized as follows: in Section II we
present the Lyapunov characterization of !ISS, including a
condition providing for the equivalence of implication and
dissipation forms of the decrease condition. In Section III-A
we review the notion of stability with respect to two measures
and in Section III-B describe how a converse Lyapunov
theorem for two measure stability does not directly lead to
an IOS-Lyapunov function. Section IV describes how !ISS
subsumes incremental ISS in the case of linear systems. We
conclude in Section V by pointing to directions for future
work.

II. !ISS-LYAPUNOV FUNCTIONS

One of the most useful tools in the ISS-based nonlinear
systems literature has been the equivalent Lyapunov charac-
terization of ISS.

Definition 3: An ISS-Lyapunov function for (1) is a
(smooth) function V : Rn ! R�0 such that, for ↵1,↵2 2
K1 and � 2 K the following hold:

↵1(|x|)  V (x)  ↵2(|x|) (7)

|x| � �(|u|) ) hrV (x), f(x, u)i  �V (x). (8)

In [23], Sontag and Wang demonstrated that ISS is equiv-
alent to the existence of an ISS-Lyapunov function. Further-
more, in [22] they demonstrated that this result holds equally
for compact invariant sets A. We note that this is a special
case of !ISS when !1(·) = !2(·) = | · |A. Furthermore,
in [14] it was shown that for parametrized systems and
consideration of a closed (not necessarily compact) set A,
an appropriate ISS-Lyapunov function implies ISS. The ISS-
Lyapunov function defined in [14] for robust stability of a
closed set is a special case of the !ISS-Lyapunov function
we now define.

Definition 4: Let ! : G ! R�0 be a continuous, positive
semidefinite function. An !ISS-Lyapunov function for !ISS
of (1) is a (smooth) function V : G ! R�0 such that, for
↵1,↵2 2 K1 and � 2 K the following hold:

↵1(!(x))  V (x)  ↵2(!(x)) (9)

!(x) � �(|u|) ) hrV (x), f(x, u)i  �V (x). (10)

This definition matches that of an SI-IOS Lyapunov func-
tion when !(·) = |h(·)| (see [26]).

Theorem 1: System (1) is !ISS if and only if it admits
an !ISS-Lyapunov function.

The proof of Theorem 1 is entirely straightforward from
the proof of the similar result for the equivalence of ISS
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and an ISS-Lyapunov function as presented in [23]. A
significant technical result required in [23] to demonstrate
that ISS implies the existence of an ISS-Lyapunov function
is a converse Lyapunov theorem for differential inclusions
developed in [15]. A two-measure generalization of this
converse Lyapunov theorem was presented in [27] and a
special case of this result serves the same purpose in proving
Theorem 1. A sketch of the proof of Theorem 1 is included
in the Appendix.

We denote a sequence of points x 2 G converging to
a point on the boundary of G by x ! @G1. If G is
unbounded, the notation implies |x| ! 1. Our next result
requires the following definition:

Definition 5: Let A ⇢ G be compact. A continuous
function ! : G ! R�0 is a proper indicator for A on G
if !(x) = 0 if and only if x 2 A and lim

x!@G1 !(x) = 1.
The “implication” form of an !ISS-Lyapunov function

is equivalent to a dissipation-type !ISS-Lyapunov function
only when the measurement function is, in fact, a proper
indicator for a compact set.

Proposition 1: Let A ⇢ G be a compact set and let
! : G ! R�0 be a proper indicator for A on G. The
!ISS-Lyapunov function in Definition 4 is equivalent to
the existence of a (smooth) function W : G ! R�0 and
functions ↵̂1, ↵̂2 2 K1 and � 2 K such that

↵̂1(!(x))  W (x)  ↵̂2(!(x)) (11)
hrW (x), f(x, u)i  �W (x) + �(|u|). (12)

Proof: That (9)-(10) imply (11)-(12) follows as in [23]. In
particular, let � 2 K1 satisfy �(r) � max{0, �̂(r)} where

�̂(r)

.

= max {hrV (x), f(x, u)i+ ↵2 (�(|u|)) :

|u|  r, !(x)  �(r)} .

Then, if !(x) � �(|u|), (10) immediately yields (12) with
W (x)

.

= V (x) for all x 2 G. On the other hand, if !(x) 
�(|u|), then by the definition of � 2 K1, we see that

�(r) � sup

|u|=r

hrV (x), f(x, u)i+ ↵2 (�(|u|))

� sup

|u|=r

hrV (x), f(x, u)i+ ↵2(!(x))

� hrV (x), f(x, u)i+ V (x).

To see that (11)-(12) imply (9)-(10), we simply take
V

.

= W

2, ↵1
.

= ↵̂

2
1, ↵2

.

= ↵̂

2
2, and �

.

= ↵

�1
2 � 4�

2. Then
the bounds (9) follow directly from (11) and the decrease
condition follows from a simple application of the chain rule
and completion of squares. ⌅

Remark 2: We note that the assumption that ! is a proper
indicator is needed only to demonstrate that (9)-(10) imply
(11)-(12). In particular, it is needed to guarantee that the
function �̂ is well-defined. The converse statement only
requires that ! : G ! R�0 be continuous.

III. STABILITY WITH RESPECT TO TWO MEASURES AND
IOS-LYAPUNOV FUNCTIONS

A. Stability with respect to two measures

The MMIS generalization of IOSS proposed in Defini-
tion 1 is inspired by the notion of stability in two measures
initially proposed by Movchan [16] and is a general case of
partial stability [28]. A general treatment of stability with
respect to two measures can be found in [13].

More recently, Teel and Praly [27] made use of the modern
application of comparison functions in stability analysis to
introduce the notion of KL-stability with respect to two
measures. We briefly review the notion of KL-stability
with respect to two measures and present its Lyapunov
characterization prior to discussing the generalization of IOS
and, consequently, IOSS.

Consider the differential inclusion

ẋ 2 F (x). (13)

Denote the set of solutions of (13) from an initial condition
x 2 G by S(x) and a particular solution by � : R�0⇥G !
G. Let !

i

: G ! R�0, i = 1, 2, be continuous functions.
The differential inclusion (13) is KL-stable with respect to
(!1,!2) if it is forward complete on G and all solutions
� 2 S(x) satisfy

!1(�(t, x))  �(!2(x), t), (14)

for all t � 0 and x 2 G. It was shown in [27, Proposition
1] that KL-stability with respect to (!1,!2) for (13) is
equivalent to uniform stability, global boundedness, and
attractivity (all defined in an appropriate two-measure sense)
and forward completeness.

As with classical stability analysis, Lyapunov functions
provide a useful method of demonstrating stability with
respect to two measures without the need to directly solve the
differential inclusion. In the two measure case, a Lyapunov
function is a (smooth) function V : G ! R�0 satisfying

↵1(!1(x))  V (x)  ↵2(!2(x)) (15)
max

w2F (x)
hrV (x), wi  �V (x) (16)

for some ↵1,↵2 2 K1.
Remark 3: Note that the decrease condition (16) provides

for an exponential decrease of the Lyapunov function. The
function V (x) on the right-hand side of (16) can, in fact, be
replaced by any class-K1 function of V (x) and KL-stability
with respect to two measures still follows using standard
comparison lemmas. ⇤

The main result of [27] is the equivalence between robust
KL-stability with respect to two measures and the existence
of a smooth Lyapunov function. Without using a Lyapunov
function, several conditions for robustness are also provided,
yielding several converse Lyapunov theorems.
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B. IOS-Lyapunov functions

The equivalence of robust KL-stability with respect to two
measures and the existence of a Lyapunov function (15)-(16)
naturally leads to the question of whether or not Theorem 1
holds in the two-measure case and, hence, for the property
of Input-to-Output Stability. In particular, we are tempted to
conjecture that two-measure ISS is equivalent to a Lyapunov
function of the form

↵1(!1(x))  V (x)  ↵2(!2(x)) (17)
V (x) � �(|u|) ) hrV (x), f(x, u)i  �V (x). (18)

While the upper and lower bounds (17) are consistent
with the definition of an IOS-Lyapunov function, Sontag and
Wang [26] demonstrated that, in general, an IOS system does
not admit an IOS-Lyapunov function with the decrease (18).
Rather, the required decrease condition is

V (x) � �(|u|) ) hrV (x), f(x, u)i  �(V (x), |x|),

where  2 KL.
This can be seen through the example (presented in [26])

ẋ1 = 0

ẋ2 =

�2x2 + u

1 + x

2
1

,

where the output is taken to be the state x2 : R�0 ! Rn.
Intuitively, finding a Lyapunov function with a decrease
condition of the form (18) is impossible since the decrease
rate would need to be independent of x1. However, choosing,
for example, an initial condition x1(0) very large results in
a decrease rate of x2 that can be very small.

On the basis of this discussion, as well as the form of an
“Input/Measurement to Output Stability” Lyapunov function
conjectured in [26], we anticipate the appropriate definition
of an MMIS Lyapunov function to be a function V : G !
R�0 satisfying

↵1(!1(x))  V (x)  ↵2(!2(x)) (19)

and

hrV (x), f(x, u)i
 �(V (x),!2(x)) + �1(|u|) + �2(!3(x)) (20)

where ↵1,↵2 2 K1, �1,�2 2 K, and  2 KL. The
equivalence of MMIS (2) and an MMIS-Lyapunov function
(19)-(20) remains to be demonstrated.

IV. INCREMENTAL INPUT-TO-STATE STABILITY

The notion of incremental Input-to-State Stability (�ISS)
was introduced by Angeli in [1] with the aim of providing
tools for incremental stability notions, particularly aimed
at observer synthesis problems. In the case of a linear
system, we see that !ISS captures incremental ISS of the
error system. Specifically, for differing initial conditions and
inputs to the system

ẋ(t) = Ax(t) + Bu(t)

we consider two copies of the system with different initial
conditions and different inputs:

ẋ1(t) = Ax1(t) + Bu1(t), x1(0) = x1

ẋ2(t) = Ax2(t) + Bu2(t), x2(0) = x2.
(21)

Define the error dynamics as e

.

= x1 � x2 and the input
difference v

.

= u1 � u2. Then the error dynamics satisfy

ė(t) = Ae(t) + Bv(t).

We now see that ISS of the error dynamics is, in fact, !ISS
of the system (21) where we are not necessarily interested in
convergence of x1(t) or x2(t) to a particular value, but rather
we want a robust stability estimate on the distance between
trajectories. Let x

.

= [x1 x2]
T and !(x)

.

= |x1 � x2|. Then
ISS of the error dynamics implies

!(x(t)) = |e(t)|
 max {�(|e(0)|, t), �(||v||1)}
= max {�(!(x), t), �(||u1 � u2||1)} .

We observe that the above argument does not extend to
nonlinear systems, which indicates that, in general, !ISS
does not subsume incremental ISS other than in the linear
case. This is perhaps surprising, but is consistent with a
recent result on the relationship of �ISS and incremental
integral ISS (�iISS) [2]. Specifically, Angeli demonstrated
that, in contrast to the standard ISS result that iISS is strictly
weaker than ISS, �iISS in fact implies �ISS. However, the
one class of systems where ISS and iISS coincide is the
class of linear systems. More generally, the precise relation-
ship between !ISS and integral Input-to-State Stability with
respect to ! (!iISS) remains to be investigated.

V. CONCLUSION

We have presented an “arbitrary measure” generalization
of Input-to-State Stability, termed Input-to-State Stability
with respect to ! (!ISS) and demonstrated its equivalence to
an appropriate Lyapunov function. The use of this arbitrary
measurement function subsumes ISS and State-Independent
Input-to-Output Stability, as well as local or partial-state ISS,
ISS for systems with multiple equilibrium points, ISS for a
prescribed motion, and ISS for closed (but not necessarily
compact) sets. We note in the latter case, this may be of
particular interest in the area of consensus algorithms (see,
for example, [17]) where the interest is in all variables or
outputs agreeing on a value without being concerned about
the specific numerical value.

The key technical results to enable this equivalence rely
on results for KL-stability with respect to two measures and
are drawn from [27]. Similar discrete-time results for KL-
stability with respect to two measures were developed in
[10], [11], and hence we expect that a similar version of
Theorem 1 will hold in discrete-time, providing a general-
ization of the results found in discrete-time ISS [9].

With results for both continuous and discrete time systems,
the natural next step is to exploit similar results for KLL-
stability with respect to two measures of hybrid systems

2973



developed in [6]. Hence, a similar process of generalizing
ISS notions may be possible for hybrid systems, keeping
in mind that even standard ISS properties do not always
translate easily to the hybrid domain [5].

Finally, we conjecture that generalization of integral ISS
[4], [20] variants also give rise to a generalized iISS-
Lyapunov function equivalence as many of the key technical
results from [15] used to derive the equivalence of integral
ISS and an integral ISS Lyapunov function [3] have been
appropriately generalized in [27].

VI. APPENDIX

A. !ISS-Lyapunov implies !ISS

The proof directly follows that for the ISS case presented
in [19] and [23, Lemma 2.14].

Fix x 2 G and u 2 U . Define

S

.

= {⌘ 2 G : V (⌘)  ↵2 � �(||u||1)}.

As in [19], we can demonstrate that S is forward invariant.
We omit the details due to space constraints.

Let t1
.

= inf{t � 0 : �(t, x, u) 2 S}. Then, for all t � t1,
using (9) we have

↵1(!(�(t, x, u)))  V (�(t, x, u))  ↵2 � �(||u||1)

which implies

!(�(t, x, u))  ↵

�1
1 � ↵2 � �(||u||1) =: �(||u||1).

Now, for t < t1, �(t, x, u) /2 S which implies
!(�(t, x, u)) > �(||u||1). Consequently,

d

dt

V (�(t, x, u)) = hrV (⌘), f(⌘, u)i|
⌘=�(t,x,u)

 �V (�(t, x, u)).

A comparison result [15, Lemma 4.4] yields the existence of
ˆ

� 2 KL such that

↵1(!(�(t, x, u)))  V (�(t, x, u))

 ˆ

�(V (x), t)  ˆ

�(↵2(!(x)), t).

Defining � 2 KL by �(r, s)

.

= ↵

�1
1

⇣
ˆ

�(↵2(r), s)

⌘
then

yields

!(�(t, x, u))  max{�(!(x), t), �(||u||1)}.

⌅

B. !ISS implies !ISS-Lyapunov Function

The proof in this direction closely follows that of the
ISS result presented in [23, Lemmas 2.12, 2.13]. Hence, we
consider two tasks: (1) we demonstrate that !ISS implies a
form of robust feedback stability; and then (2) demonstrate
that this robust feedback stability implies the existence of an
!ISS-Lyapunov function. By robust feedback stability, as in
[23] we mean the existence of a stabilizing state feedback
' : G ! R�0 such that, for any small perturbation of the
feedback, KL-stability with respect to (!,!) is maintained.

1) !ISS implies Robust Feedback Stability: For the dif-
ferential inclusion ẋ 2 F (x), stability with respect to (!,!)

was shown to be equivalent to (see [27, Proposition 1]):
• The differential inclusion ẋ 2 F (x) is forward com-

plete;
• (Uniform stability and global boundedness): There ex-

ists � 2 K1 such that, for each x 2 G, all solutions
� 2 S(x) satisfy

!(�(t, x))  �(!(x)), 8t � 0;

• (Uniform global attractivity): For each r > 0 and " > 0,
there exists T (r, ") > 0 such that, for each x 2 G, all
solutions � 2 S(x) satisfy

!(x)  r, t � T ) !(�(t, x))  ".

Let d : R�0 ! [�1, 1]

m. By an abuse of notation, we will
also use d 2 [�1, 1]

m. We will construct a state feedback
' : G ! R�0 and demonstrate that

ẋ 2 F (x)

.

= [
d2[�1,1]mf(x, d'(x))

is KL-stable with respect to (!,!).
From the functions in the !ISS -estimate (5) define

functions ↵,� 2 K1 by

↵(r)

.

= max

⇢
�(r, 0),

3

2

r

�
, and (22)

�(r)

.

=

1

2

�

�1

✓
1

4

↵

�1
(r)

◆
< �

�1

✓
1

4

↵

�1
(r)

◆
. (23)

Let  2 K1 and ' : G ! R�0 be any smooth function
satisfying

 (!(x))  '(x)  �(!(x)). (24)

That this is always possible is demonstrated in [23] as
follows: Let �̃(r) = �(

p
r) and choose any smooth � 2 K1

with �(r)  �̃(r). Set '(x) = �(!(x)

2
) and  (r) = �(r

2
).

We now demonstrate that ẋ = f(x, d'(x)) is KL-stable
with respect to (!,!). We denote solutions to this differential
equation by �

'

(t, x, d).

Claim: For any x 2 G and d : R�0 ! [�1, 1]

m we have

�('(�

'

(t, x, d)))  1

2

!(x) 8t � 0. (25)

Proof: We first note that the ISS estimate implies

!(x)  �(!(x), 0)  ↵(!(x)). (26)

Consequently, from (24), (22), and (26) we have

�('(x))  � � �(!(x)) <

1

4

↵

�1
(!(x))  1

4

!(x).

From the strict inequality above we have that for sufficiently
small t > 0

�('(�

'

(t, x, d)))  1

4

!(x). (27)

Let
t1

.

= inf

⇢
�('(�

'

(t, x, d))) >

1

2

!(x)

�
.
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Assume that t1 < 1, then (25) holds for all t 2 [0, t1).
As a consequence, �(|d(t)'(�

'

(t, x, d))|)  1
2↵(!(x)) for

almost all t 2 [0, t1). The !ISS estimate (5) yields

!(�

'

(t, x, d))  max

⇢
�(!(x), 0)),

1

2

↵(!(x))

�

 ↵(!(x)), 8t 2 [0, t1]. (28)

Hence, using (23), (24), and (28) we have

�('(�

'

(t1, x, d)))  �(�(!(�

'

(t1, x, d))))  1

4

!(x)

which contradicts the definition of t1 above and proves the
claim. ⌅

Uniform stability and global boundedness: Combining (5)
and (25) we see that, for all t � 0,

!(�

'

(t, x, d))  max

⇢
�(!(x), 0),

1

2

!(x)

�
 ↵(!(x)).

Uniform global attractivity: We note that (5) and (25)
imply

!(�

'

(t, x, d))  max

⇢
�(!(x), t),

1

2

!(x)

�
, 8x 2 G.

Also, since � 2 KL, for each r > 0 there exists T (r) > 0

such that �(r, t) <

1
2r for all t � T (r). Consequently, for

!(x)  r,

!(�

'

(t, x, d))  1

2

r, 8t � T (r).

Fix any " > 0 and let k be a positive integer such that
2

�k

r < ". Let r1 = r and r

i

=

1
2r

i�1 for i � 2. Let
T (r, ") = T (r1) + T (r2) + · · ·+ T (r

k

). Therefore we have

!(�

'

(t, x, d))  r

2

k

< ", 8!(x)  r, t � T (r, ").

2) Robust Feedback Stability implies !ISS-Lyapunov:
Having demonstrated strong KL-stability of the difference
inclusion ẋ 2 F (x), we can appeal to a converse theorem
[27, Theorems 1 and 2] to obtain a Lyapunov function
V : G ! R�0 and functions ↵1,↵2 2 K1 such that

↵1(!(x))  V (x)  ↵2(!(x)) (29)
max

w2F (x)
hrV (x), wi  �V (x). (30)

We can rewrite the decrease condition as

hrV (x), f(x, u)i  �V (x)

whenever |u|  '(x). Since  (!(x))  '(x) for all x,
the above will also hold for |u|   (!(x)). Hence, taking
�(r) =  

�1
(r) for all r � 0 yields

�(|u|)  !(x) =) hrV (x), f(x, u)i  �V (x).
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