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ABSTRACT by interleaving across several codewords. The idea is to de-
In this paper we design low-density parity-check (LDPC)sign the code for the channel rather than to change the chan-
codes for erasure channels with packet losses. Binary basel to fit the code. In this paper we consider a very simple
matrices with good minimum stopping set size are designepacket erasure channel and inclidjgfixed length packets of
and superposition is used with these matrices to construéngthLp in each LDPC codeword and introdublg packet
LDPC codes which can correct losses of whole packets. Bijpsses. The remaining received packets can be corrupted by
using superposition, rather than by using the more traditionandom bit erasures with erasure probabitity
codeword interleaving, LDPC codes are produced which are A lengthn ratek/n binary error correction code is op-
much more robust for packet loss channels also corrupted dimal on the BEC, and called maximum distance separable

random erasures. (MDS), if it can correct any pattern of— k bit erasures [8].
For the packet loss channel we will say that an error correc-
1. INTRODUCTION tion code is MDS if it can correct packets of erasures with

. . . combined length of up to— k bits. Although a code may be
A low-density parity-check (LDPC) code is a block code de'MDS when decoded with an alternative decoding algorithm,

fine(_j by a sparse parity-che_ck matrbd,., and decoded it- we say that an LDPC code parity-check matrix is MDS-MPA
eratively with message passing decod_lng. LDPC codes ar, essage passing algorithm) when it can correctmmyk
well known to provide excellent decoding performances o rasures using iterative message passing decoding.

memoryless channels (see e.g. [1]), and recent interest has rpe jerative decoding of LDPC codes on erasure chan-
fgcgsie% on their performance on channels with MemMoryels is particularly straightforward since a transmitted bit is
[2, Cha I | ith | | ither received correctly or completely erased (it is assumed
anneis with memory encompass many real-worlgy ¢ the receiver is able to detect an erasure and so deletions
communications systems including fading environmentsg o ot considered). If only one of the bits in any given
packet based communications such as internet transmissiongyqa parity-check equation is erased the erased bit can be
and magnetic storage devices where the burst errors causggio mined by choosing the value which satisfies the parity-
by thermal asperity and media defects are the dominant erMheck equation. Conversely, if more than one bit in any given
typ(la:. | h Is the simple bi h arity-check equation is erased, no correction can be made
Or MEMOTrYIESS channels the SImple binary erasure cha sing that equation. Message passing iterative decoding of
nel (BEC) has provided a useful framework to understand thg '/ pc code is thus a process of finding parity-check equa-

Fherfotr)manc$ of LDPO(I: coqestgsegEec.:g. [6'b7])’ a?d”manyl.e[i?gns which check on only one erased bit. In a decode itera-
X € observa |on|s made usllng r? |Cag- e_lusle u yﬂ:i_ppl n all such parity-check equations are found and the erased
0 More géneral memoryless channeis. similarly, In IS Pagig oo rrected. After these bits have been corrected any new

per we employ binary erasure channels with packet losses g8 i check equations checking on only one erased bit are
a natural starting point for considering channels with MeMtnen corrected in the subsequent iteration. The process is

Ory.Wh'I ivation deri et | hapfEPeated until all the erasures are corrected or all the remain-
lie our motivation in considering a Packet 10Ss chany,q ncorrected parity-check equations check on two or more

nel is its simplicity, these erasure channels do occur in SOMg a e pits. The latter will occur if the erased bits include a
important applications. Dropped packets in Internet trans;

missions can be modeled as packet losses, and forward errsoert of code bits3, which are a stopping set [7]:
correction is becoming more attractive for these channel®efinition 1 A stopping setS, is a set of code bits with the

particularly in real time or multicast applications were au-property that every parity-check equation which checks on a
tomatic repeat request schemes are less practical. Similarlyit in Schecks on at least two bits B

disk failures in disk array systems can be usefully modeled as

lost packets. Further, any system where the receiver is able If all of the bits in a stopping set are erased none of them
to distinguish deep fades, by employing training sequencesan be corrected. Thus the stopping set distribution of an
for example, can treat the fading period as an erasure bur$tDPC code determines the erasure patterns for which the it-
In higher order modulation schemes the detection of fadegrative decoding algorithm will fail on the BEC [7]:

symbols could be modeled as the loss of small binary pac

ots. lTDefinition 2 An LDPC code parity-check matrix with mini-

mum stopping set si&;, can correct any set d&yin — 1 or

Here we are considerin [ i N ; .
W idering the design of LDPC codes dlEe;wer erasures using iterative decoding on the BEC.

rectly for these channels rather than randomizing the chann
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is the important factor in determining the code performanceone weightN — 1 column,N columns of weightt, andM =
Using spacing measures, several authors have considered thie- 1 rows:
burst erasure correcting capability of LDPC codes in the

presence of a single erasure burst [3, 4, 5]. In this paper 1100 0 0
we extend this work to design LDPC codes which can cor- 1010 0 O
rect multiple erasure bursts in the form of packet losses. The Hpase— | L 0 01 0 0} 3)
proposed LDPC codes are presented in Section 2 and their S 000 . 0
performance described in Section 3. 1 00 0 O 1
2. LDPC CODES FOR BURST ERASURE Note that not all parity-check matrices of MDS error correc-
CORRECTION tion codes will provide MDS-MPA LDPC codes. For exam-

Abinary LDPC code is represented by a sparse binary parity?'€ the extended Hamming code
check matrix,H, and a bipartite graph7, called a Tanner 1100
graph. Each bit in the codeword corresponds to a column H—l1 01 0
of H and a bit vertex of7, and each parity-check equation - 111 11
satisfied by the codeword corresponds to a rovadnd a

check vertex of7. The (j,i)-th entry ofH is ‘1’, and an . . . .
edge joins tha-th bit veEtex> andj-th check vertex of7, is not MDS-MPA as it contains a stopping set of skzéiow-

i i- itisi i ; ey ever, the parity-check matrices as defined in (3) are MDS-
g;zgt:otrr]l codeword bit is included in thgth parity-check MPA as LDPC codes:

_We design LDPC codes for packet erasure channels byemma 2 The LDPC codes described by parity-check ma-
using superposition, starting witth& x N base matritbase  trices in the form of(3) are MDS-MPA when decoded with
and replacing each non-zero entryHpaseWith vx vpermu-  message passing decoding.
tation matrices, and each zero entry with the v all zeros

matrix, to create am x n LDPC code parity-check matrix Proof: Firstly, the weighti columns do not overlap and
Hpermswherem = Mv andn = Nv. The minimum stopping so any stopping se&, will require the weightM column.

set size of the base matrix determines the packet erasure cétewever, allM of the weightd columns are then required
rection capability of the final code and the choice of permufor Sto ensure that every parity-check equation checks on
tation matrices determines its resilience to random erasurgwo bits inS. ThusSyin = N and any sdN — 1 erased bits can

in the received packets. We explicitly design base matrices ibe corrected. |
Section 2.1 before considering the permutation matrices for Thus we have optimal base matrices for either high rate
the superposition in Section 2.2. codes which correct one burst, or low rate codes which cor-

rect multiple bursts. Unfortunately, however, binary MDS

2.1 Base matrices for LDPC codes codes withM > 1 and rate> 1/2 do not exist [9]. For higher

rate LDPC codes which correct multiple bursts our strategy

The base matrices we require are small binary matriceg to construct base matrices with maximum poss&g
which have good minimum stopping set size, ideally which Firstly, a stopping set of size two can only occur if there

are MDS-MPA. From Lemma 1, this is equivalent to requir- 5 .o . igentical columns in the code parity-check matrix.

ing base matrices with minimum stopping set size greatef < we can construct base matrices V8t — 3 by con-

thanN —K: structingHpaseWith every possible column of every weight,
: i.e. by using the parity-check matrices of Hamming codes.
e L TGN vt K1Y LEPC code party-check ™ 13 design base maces ith > 4 we consier .
trices which are systematic, with & x M identity matrix
Follows by definition. An MDS-MPA code forming the lastM columns. As we have every weighteol-
umn once inHpase(in the lastM columns) the remaining
ﬁolumns must be weigl8,i, — 1 or greater to achieve a min-

Proof:
must be able to correct any patternNf- K erasures, how-
ever message passing decoding of an LDPC code will fail o ; s .
a erasure ofgsizpsmin ar?d the pro?)f follows. Imum stopping set size dinin. Base matrices for LDPC

Base matrices witBi, — 2 are straightforward since any ©0des With column weighy are constructed by:
stopping set requires two columns. We will use the matrices
Hbase: [Hya |]7 (4)

(1) WwhereH, has columns of weighy and is alsod-cycle free
andl is anM x M identity matrix. A matrix,H, is 4-cycle

in particular. For a base matrix Wi, — 2 which is MDS- free if no two columns oH contain non zero entries in the
same two rows.

MPA we use only one parity-check equation and vary the
number of columns to vary the rate: Lemma 3 The matrixHyase= [Hy, 1] hasSyin = y+ 1 if Hy

is 4-cycle free.
Hoase=[1 1 1 ... 1]. 2

1

10
1 1

11
Hbase: 0 1 1

Proof: Firstly, the weightl columns do not overlap
MDS-MPA base matrices witBy,;, > 2 are possible by using and so any stopping s&will require at least one weight-
the parity-check matrix of repetition codes. Lendthrate- column. No other column ilpzseCan be incident in more
1/N, LDPC code parity-check matrices are constructed witlthan one row in common with this weigltcolumn since



this requires a 4-cycle, which, by definition, is not allowed2.2 LDPC codes constructed using superposition

in Hy. The remaining columns dpaseare weight-1 and so )

also cannot be incident in more than one row in commoror a packet loss channel with packets of lengghLDPC

with this weighty column. Thus at leasy more columns codes are designed using superposition with size L

are required foSto ensure that every parity-check equationPermutation matrices so that one packet corresponds to the

which is incident on the bit corresponding to the weight- columns inHpermsfrom one column oHpase

column is incident on two bits iBand we hav&yin > y+ 1.

The minimum stopping set size is equalte- 1, since every - . .

column ofHy is in a stopping set with thgweight-1 columns ~ -émma s If Hpase has minimum stopping set siin then

incident on the same rows as it. ™ perms CaN k_Je used to correct arf§min — 1 packet losses of

Avoiding 4-cycles the in the Tanner graphs of LDPC codes$Z€Lp = V, if the remaining packets are erasure free.

can improve the decoding performance of iterative decoding

and consequently LDPC matrices which are fred-gf/cles Proof:  SinceHpase has a minimum stopping set size

are very well studied with many useful constructions avail-of S,;,, and since each bit of the stopping set is in a differ-

able (see e.g. [10], [11], [12], [13]). ent column of permutations iHperms We need to erasBin
However, requiringd-cycle free codes is a tighter con- packets to erase a stopping set. [ |

straint than is e_lctually needed, and we can produce higher The case where every non-zero entr hsois replaced

rate base matrices by allowingcycles which do not add it the same permutati)(/)n matrix is eqﬁ-ilvalent topindepen-

small stopping sets. For example, we can construct thrégeny encoding codewords usingfsaseand then interleav-

burst erasure correcting codes by choositgsavith Smin > jng them. Interleaving codewords in this way is commonly

4. used in bursty channels. However, for LDPC codes the re-

. . sulting code is not very powerful since each copyHgfseis

Lemma 4 The matrixHpase= [Ha, || hasSnin = 4if Hs has 5 gisjoint subgraph in the Tanner graph. By instead choos-

Smin => 4. ing different permutation matrices for some of the substitu-

tions we can achieve much more powerful LDPC codes for

s0 any stopping s@will require at least one of the weight- channels which include random erasures while still providing

3 columns. If exactly one weigt8-column is included ir equwalent. pacl.<et erasure prote_ctlon. ,
thenS must be size four since three weightolumns are Choosing different permutation matrices for some of the
required to ensure that each of the three checks on the B#oN-Z€ro entries itHpase will produce a connected Tanner
corresponding to the weigt&column check on two bits in graph res.ultmg in LDPC codes more resilient to random era-
S. If exactly two weight3 columns are included in a stop- Sures while still satisfying Lemma 5. Where the base ma-
ping set, it again must be size at least four since two wedght-{ricés are systematic replacing the entries in the welght-
columns can overlap in at most two rows without forming ac0luUmns ofHpasewith the identity matrix will ensure a sys-
size two stopping set ihls, leaving two parity-check equa- tematicHpermswhich is easily encoded via back-substitution.
tions checking on one bit iSand thus requiring two weight- Since the choice of base matrix fixes the packet erasure cor-
1 columns to complets&. If exactly three weigh columns rection, we also have the flexibility to choose the permutation
are included ir§, it again must be size at least four unless thematrices to improve the code’s resilience to random erasures
stopping set is withirHs, violating our requirement that; N the received packets. In particular, permutations for the
hasSmin > 4. Thus any stopping sets of size less than four inf’0N-Z€ro entries in the columns Idf)asewnh weight greater
Hpaseis avoided by our constraint thel hasSmin > 4 while than one can be chosen so as to avoid small cyclelgdms
stopping sets of size four are guaranteed by the inclusion of When the base matrix is not systematic circulant permu-
every possible weight-1 column yase B tation matrices can be used for the superposition to ensure
For example, the base matrix guasi-cyclic codes and thus ease of encoding (as in [15]). We
denote byl' the cyclic shift byi columns left of the identity
matrix 1. A 4-cycle freeHpermscan be constructed by choos-
ing the values of for each circulant so that the difference in
(5) shift values between the two entries of the 4-cycle in one col-
umn ofHyaseis NOt the same as the difference in shift values
chosen for the two entries of the 4-cycle in the other column
of Hpase

has a minimum stopping set sizesf Further, by using circulant permutations and swapping
Lastly, for a memoryless channel and regular LDPCcolumns between packets we can design codes which can
codes it has been shown that parity-check matrices witkorrect more packets than is guaranteed by Lemma 5. For
columns of weight three are generally the best choice [1]Jexample, using the base matrices from (1) the non zero en-
Thus we consider LDPC base matrices of weight three in outries in the first row and first two columns are replaced by the
final construction. We propose to use the incidence matricesx v identity matrix! and the second non-zero entry in the
of 2-(p,3,2) designs [14] to formHpaseWith Syin > y+1.  j-th column, forj > 2, is replaced by the x v matrix | 12,
The 2-(p,3,2) designs have binary incidence matricés, Then the last — 2 columns in thej-th circulant ofHperms
with column weight3 and every pair of rows o are in-  for j > 2, are swaped with columns from the first two circu-
cident in two columns oN. The incidence matrices of de- lants which share a common non-zero entry. The resulting
signs from isomorphism classes without the configurationsodes are then able to correct up3@n, packet losses using
that lead to small stopping sets are usedHpyse message passing decoding.

Proof: Firstly the weightl columns do not overlap and

Hbase:

OO rRFREF
OrFrL,EFrO
PFRPPFPOO
PRLROOPR
RPOORFk
[cNeoNoNoN
QOOoOr o
(ool NeoNe]
(el —NeoloNe]
P OOOQ



3. SIMULATION RESULTS 10’ ¥

Figs. 1 to 4, show the performance of LDPC codes on packe 1
loss channels witiN, = N packets per codeword. Codes of
rated/5, rated/4, rated/2, rate2/3 and rate5/6 are sim- 10
ulated. The ratd:/5, N, = 5 and ratet/4, Ny, = 4 burst er- 5
ror correcting codes (shown in Figs. 1 and 2) are from the
MDS-MPA base matrices in (3) and are guaranteed to corre:§ -
Np — 1 lost packets if the remainder are erasure free. The rate 3
5/6, Np = 30 codes use a Hamming code as the base matri wo°
and so are guaranteed to correct at least two lost packets ™ 4
the remainder are erasure free. The rBt2-N, = 14 codes o
(shown in Figs. 1 and 2) useZa(7,3,2) design for the base
matrix while the ratet/2, N, = 10 codes (shown in Fig. 2)
use the base matrix from (5) and so both are guaranteed -

B

rate-1/4 Ingth-4pkts

+ rate-1/2 Ingth-14pkts

correct at least three lost packets if the remainder are erasu d rate-5/6Ingth-30pkis
free. Finally, the rat€/3, N, = 6 codes (shown in Fig. 4),  w*
and the ratet/2, N, = 4 codes (shown in Fig. 3), use the base %" Erasure Pronsbilty In the Recelved Packets "

matrices given in (1). Three different burst error correcting

codes are constructed from these base matrices, the first|i$gure 1: The performance of LDPC codes on a packet loss
traditional interleaving (by using identity matrices for the su-channel with 2 packets lost per codeword and varying ran-
perposition), the second uses superposition with permutatiofiom erasure rate in the received packets. Dashed curves
matrices chosen to avoid small cycles and the third uses cCikhow LDPC codes formed using superposition with an iden-
culant matrices for the superposition combined with columrﬁty matrix, solid curves show LDPC codes formed using
swaps to increase the packet loss protection. superposition with permutation matrices and dotted curves

Also shown in Figs. 1 to 4 is the performance of pseudoshow the performance of column weight-3 regular LDPC
randomly constructed LDPC codes with the same rate anebdes with 4-cycles removed.
length, but with all columns weight 3, and constructed to
avoid small cycles using the method from [16]. To choose
a particular code the average monte-carlo performance of
the ensemble has been found by pseudo-randomly generi
ing a new parity-check matrix for each codeword transmitted
Then, by trial and error, using pseudo-randomly constructe ¢
codes and simulation, a particular parity-check matrix ha: 12
been found which performs better than this average. Itis thi
parity-check matrix which is used to simulate the pseudo
random performance in the figures. The maximum numbe o+
of decoder iterations for all of the codes is set to the numbe g
of code parity-check equations.

Figs. 1 and 2, show the performance of LDPC codes ol
noisy packet loss channels witly, = N packets per code-
word and a fixed number of small, length = 10, packets
lost. In every case the LDPC codes formed from the bas
matrices in Section 2 using superposition produce signifi
cantly better performances than the pseudo-random LDP

it Erasure

Bi

10°

rate-1/5 Ingth-5pkts

rate-1/2 Ingth-10pkts

codes. The codes formed using permutation matrices fc *° | + rae-12 Ingth-1apkis |
the superposition produce significantly better performance e e - g
than the codes formed using identity matrices for the su Erasure Probabiltyin the Received Packets

perposition in all but the MDS-MPA codes where they per-

form equivalently. Further, the codes constructed using surigure 2: The performance of LDPC codes on a packet loss

perposition offer guaranteed burst erasure correction perfoehannel with 3 packets lost per codeword and varying ran-

mance in a purely packet loss channel and have the advantagem erasure rate in the received packets. Dashed curves

of straightforward encoding implementation, advantages nathow superposition using an identity matrix, solid curves

shared by the pseudo-randomly constructed LDPC codes. show superposition using permutation matrices and dotted
Figs. 3 and 4, show the performance of LDPC codes ogurves show the performance of column weight-3 regular

packet loss channels wit, = N, lengthL, = 100, pack- LDPC codes with 4-cycles removed.

ets per codeword and a random packet loss probability. The

LDPC codes formed using superposition outperform tradi-

tional pseudo-randomly constructed LDPC codes, with the

codes formed using cyclic permutations for the superposi-

tion giving the best performances. The codes constructedard quasi-cyclic encoding implementation, with only min-

using cyclic permutations offer a guaranteed packet corredmal additional complexity for the column swaps between

tion performance and have the advantage of a straightfopackets.
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