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ABSTRACT
In this paper we design low-density parity-check (LDPC)
codes for erasure channels with packet losses. Binary base
matrices with good minimum stopping set size are designed
and superposition is used with these matrices to construct
LDPC codes which can correct losses of whole packets. By
using superposition, rather than by using the more traditional
codeword interleaving, LDPC codes are produced which are
much more robust for packet loss channels also corrupted by
random erasures.

1. INTRODUCTION

A low-density parity-check (LDPC) code is a block code de-
fined by a sparse parity-check matrix,H, and decoded it-
eratively with message passing decoding. LDPC codes are
well known to provide excellent decoding performances on
memoryless channels (see e.g. [1]), and recent interest has
focussed on their performance on channels with memory
[2, 3, 4, 5].

Channels with memory encompass many real-world
communications systems including fading environments,
packet based communications such as internet transmissions,
and magnetic storage devices where the burst errors caused
by thermal asperity and media defects are the dominant error
type.

For memoryless channels the simple binary erasure chan-
nel (BEC) has provided a useful framework to understand the
performance of LDPC codes (see e.g. [6, 7]), and many of
the observations made using the BEC can be usefully applied
to more general memoryless channels. Similarly, in this pa-
per we employ binary erasure channels with packet losses as
a natural starting point for considering channels with mem-
ory.

While our motivation in considering a packet loss chan-
nel is its simplicity, these erasure channels do occur in some
important applications. Dropped packets in Internet trans-
missions can be modeled as packet losses, and forward error
correction is becoming more attractive for these channels,
particularly in real time or multicast applications were au-
tomatic repeat request schemes are less practical. Similarly,
disk failures in disk array systems can be usefully modeled as
lost packets. Further, any system where the receiver is able
to distinguish deep fades, by employing training sequences
for example, can treat the fading period as an erasure burst.
In higher order modulation schemes the detection of faded
symbols could be modeled as the loss of small binary pack-
ets.

Here we are considering the design of LDPC codes di-
rectly for these channels rather than randomizing the channel
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by interleaving across several codewords. The idea is to de-
sign the code for the channel rather than to change the chan-
nel to fit the code. In this paper we consider a very simple
packet erasure channel and includeNp fixed length packets of
lengthLp in each LDPC codeword and introduceNb packet
losses. The remaining received packets can be corrupted by
random bit erasures with erasure probabilityp.

A length-n rate-k/n binary error correction code is op-
timal on the BEC, and called maximum distance separable
(MDS), if it can correct any pattern ofn−k bit erasures [8].
For the packet loss channel we will say that an error correc-
tion code is MDS if it can correct packets of erasures with
combined length of up ton−k bits. Although a code may be
MDS when decoded with an alternative decoding algorithm,
we say that an LDPC code parity-check matrix is MDS-MPA
(message passing algorithm) when it can correct anyn− k
erasures using iterative message passing decoding.

The iterative decoding of LDPC codes on erasure chan-
nels is particularly straightforward since a transmitted bit is
either received correctly or completely erased (it is assumed
that the receiver is able to detect an erasure and so deletions
are not considered). If only one of the bits in any given
code parity-check equation is erased the erased bit can be
determined by choosing the value which satisfies the parity-
check equation. Conversely, if more than one bit in any given
parity-check equation is erased, no correction can be made
using that equation. Message passing iterative decoding of
an LDPC code is thus a process of finding parity-check equa-
tions which check on only one erased bit. In a decode itera-
tion all such parity-check equations are found and the erased
bits corrected. After these bits have been corrected any new
parity-check equations checking on only one erased bit are
then corrected in the subsequent iteration. The process is
repeated until all the erasures are corrected or all the remain-
ing uncorrected parity-check equations check on two or more
erased bits. The latter will occur if the erased bits include a
set of code bits,S, which are a stopping set [7]:

Definition 1 A stopping set,S, is a set of code bits with the
property that every parity-check equation which checks on a
bit in Schecks on at least two bits inS.

If all of the bits in a stopping set are erased none of them
can be corrected. Thus the stopping set distribution of an
LDPC code determines the erasure patterns for which the it-
erative decoding algorithm will fail on the BEC [7]:

Definition 2 An LDPC code parity-check matrix with mini-
mum stopping set sizeSmin can correct any set ofSmin−1 or
fewer erasures using iterative decoding on the BEC.

On a burst erasure channel the spacing between the stop-
ping set bits, rather than just the size of the stopping sets,



is the important factor in determining the code performance.
Using spacing measures, several authors have considered the
burst erasure correcting capability of LDPC codes in the
presence of a single erasure burst [3, 4, 5]. In this paper
we extend this work to design LDPC codes which can cor-
rect multiple erasure bursts in the form of packet losses. The
proposed LDPC codes are presented in Section 2 and their
performance described in Section 3.

2. LDPC CODES FOR BURST ERASURE
CORRECTION

A binary LDPC code is represented by a sparse binary parity-
check matrix,H, and a bipartite graph,T , called a Tanner
graph. Each bit in the codeword corresponds to a column
of H and a bit vertex ofT , and each parity-check equation
satisfied by the codeword corresponds to a row ofH and a
check vertex ofT . The ( j, i)-th entry ofH is ‘1’, and an
edge joins thei-th bit vertex andj-th check vertex ofT ,
if the i-th codeword bit is included in thej-th parity-check
equation.

We design LDPC codes for packet erasure channels by
using superposition, starting with aM ×N base matrixHbase,
and replacing each non-zero entry inHbasewith v×v permu-
tation matrices, and each zero entry with thev× v all zeros
matrix, to create anm× n LDPC code parity-check matrix
Hpermswherem= Mv andn = Nv. The minimum stopping
set size of the base matrix determines the packet erasure cor-
rection capability of the final code and the choice of permu-
tation matrices determines its resilience to random erasures
in the received packets. We explicitly design base matrices in
Section 2.1 before considering the permutation matrices for
the superposition in Section 2.2.

2.1 Base matrices for LDPC codes

The base matrices we require are small binary matrices
which have good minimum stopping set size, ideally which
are MDS-MPA. From Lemma 1, this is equivalent to requir-
ing base matrices with minimum stopping set size greater
thanN−K:

Lemma 1 A lengthN rate K/N LDPC code parity-check
matrix which is MDS-MPA will haveSmin > N−K.

Proof: Follows by definition. An MDS-MPA code
must be able to correct any pattern ofN−K erasures, how-
ever message passing decoding of an LDPC code will fail on
a erasure of sizeSmin and the proof follows.

Base matrices withSmin = 2 are straightforward since any
stopping set requires two columns. We will use the matrices

Hbase=
[

1 0 1 1 . . . 1
0 1 1 1 . . . 1

]
(1)

in particular. For a base matrix withSmin = 2 which is MDS-
MPA we use only one parity-check equation and vary the
number of columns to vary the rate:

Hbase= [ 1 1 1 . . . 1 ] . (2)

MDS-MPA base matrices withSmin > 2 are possible by using
the parity-check matrix of repetition codes. Length-N, rate-
1/N, LDPC code parity-check matrices are constructed with

one weightN−1 column,N columns of weight-1, andM =
N−1 rows:

Hbase=




1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
... 0 0 0

... 0
1 0 0 0 0 1




. (3)

Note that not all parity-check matrices of MDS error correc-
tion codes will provide MDS-MPA LDPC codes. For exam-
ple the extended Hamming code

H =

[
1 1 0 0
1 0 1 0
1 1 1 1

]
,

is not MDS-MPA as it contains a stopping set of size3. How-
ever, the parity-check matrices as defined in (3) are MDS-
MPA as LDPC codes:

Lemma 2 The LDPC codes described by parity-check ma-
trices in the form of(3) are MDS-MPA when decoded with
message passing decoding.

Proof: Firstly, the weight-1 columns do not overlap and
so any stopping set,S, will require the weight-M column.
However, allM of the weight-1 columns are then required
for S to ensure that every parity-check equation checks on
two bits inS. ThusSmin = N and any soN−1 erased bits can
be corrected.

Thus we have optimal base matrices for either high rate
codes which correct one burst, or low rate codes which cor-
rect multiple bursts. Unfortunately, however, binary MDS
codes withM > 1 and rate> 1/2 do not exist [9]. For higher
rate LDPC codes which correct multiple bursts our strategy
is to construct base matrices with maximum possibleSmin.

Firstly, a stopping set of size two can only occur if there
are two identical columns in the code parity-check matrix.
Thus we can construct base matrices withSmin = 3 by con-
structingHbasewith every possible column of every weight,
i.e. by using the parity-check matrices of Hamming codes.

To design base matrices withSmin ≥ 4 we consider ma-
trices which are systematic, with anM×M identity matrix
forming the lastM columns. As we have every weight-1 col-
umn once inHbase(in the lastM columns) the remainingK
columns must be weightSmin−1 or greater to achieve a min-
imum stopping set size ofSmin. Base matrices for LDPC
codes with column weightγ are constructed by:

Hbase= [Hγ , I ], (4)

whereHγ has columns of weightγ and is also4-cycle free
and I is anM×M identity matrix. A matrix,H, is 4-cycle
free if no two columns ofH contain non zero entries in the
same two rows.

Lemma 3 The matrixHbase= [Hγ , I ] hasSmin = γ +1 if Hγ
is 4-cycle free.

Proof: Firstly, the weight-1 columns do not overlap
and so any stopping setS will require at least one weight-γ
column. No other column inHbasecan be incident in more
than one row in common with this weight-γ column since



this requires a 4-cycle, which, by definition, is not allowed
in Hγ . The remaining columns ofHbaseare weight-1 and so
also cannot be incident in more than one row in common
with this weight-γ column. Thus at leastγ more columns
are required forS to ensure that every parity-check equation
which is incident on the bit corresponding to the weight-γ
column is incident on two bits inSand we haveSmin≥ γ +1.
The minimum stopping set size is equal toγ +1, since every
column ofHγ is in a stopping set with theγ weight-1 columns
incident on the same rows as it.
Avoiding 4-cycles the in the Tanner graphs of LDPC codes
can improve the decoding performance of iterative decoding
and consequently LDPC matrices which are free of4-cycles
are very well studied with many useful constructions avail-
able (see e.g. [10], [11], [12], [13]).

However, requiring4-cycle free codes is a tighter con-
straint than is actually needed, and we can produce higher
rate base matrices by allowing4-cycles which do not add
small stopping sets. For example, we can construct three
burst erasure correcting codes by choosing aH3 with Smin ≥
4.

Lemma 4 The matrixHbase= [H3, I ] hasSmin = 4 if H3 has
Smin ≥ 4.

Proof: Firstly the weight-1 columns do not overlap and
so any stopping setSwill require at least one of the weight-
3 columns. If exactly one weight-3 column is included inS
thenS must be size four since three weight-1 columns are
required to ensure that each of the three checks on the bit
corresponding to the weight-3 column check on two bits in
S. If exactly two weight-3 columns are included in a stop-
ping set, it again must be size at least four since two weight-3
columns can overlap in at most two rows without forming a
size two stopping set inH3, leaving two parity-check equa-
tions checking on one bit inSand thus requiring two weight-
1 columns to completeS. If exactly three weight-3 columns
are included inS, it again must be size at least four unless the
stopping set is withinH3, violating our requirement thatH3
hasSmin ≥ 4. Thus any stopping sets of size less than four in
Hbaseis avoided by our constraint thatH3 hasSmin ≥ 4 while
stopping sets of size four are guaranteed by the inclusion of
every possible weight-1 column inHbase.
For example, the base matrix

Hbase=




1 0 0 1 1 1 0 0 0 0
1 1 0 0 1 0 1 0 0 0
1 1 1 0 0 0 0 1 0 0
0 1 1 1 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0 1


 (5)

has a minimum stopping set size of4.
Lastly, for a memoryless channel and regular LDPC

codes it has been shown that parity-check matrices with
columns of weight three are generally the best choice [1].
Thus we consider LDPC base matrices of weight three in our
final construction. We propose to use the incidence matrices
of 2-(p,3,2) designs [14] to formHbasewith Smin ≥ γ + 1.
The 2-(p,3,2) designs have binary incidence matrices,N,
with column weight3 and every pair of rows ofN are in-
cident in two columns ofN. The incidence matrices of de-
signs from isomorphism classes without the configurations
that lead to small stopping sets are used forHbase.

2.2 LDPC codes constructed using superposition

For a packet loss channel with packets of lengthLp LDPC
codes are designed using superposition with sizev = Lp
permutation matrices so that one packet corresponds to the
columns inHpermsfrom one column ofHbase.

Lemma 5 If Hbasehas minimum stopping set sizeSmin then
Hperms can be used to correct anySmin− 1 packet losses of
sizeLp = v, if the remaining packets are erasure free.

Proof: SinceHbasehas a minimum stopping set size
of Smin, and since each bit of the stopping set is in a differ-
ent column of permutations inHperms, we need to eraseSmin
packets to erase a stopping set.

The case where every non-zero entry inHbaseis replaced
with the same permutation matrix is equivalent to indepen-
dently encodingv codewords usingHbaseand then interleav-
ing them. Interleaving codewords in this way is commonly
used in bursty channels. However, for LDPC codes the re-
sulting code is not very powerful since each copy ofHbaseis
a disjoint subgraph in the Tanner graph. By instead choos-
ing different permutation matrices for some of the substitu-
tions we can achieve much more powerful LDPC codes for
channels which include random erasures while still providing
equivalent packet erasure protection.

Choosing different permutation matrices for some of the
non-zero entries inHbase will produce a connected Tanner
graph resulting in LDPC codes more resilient to random era-
sures while still satisfying Lemma 5. Where the base ma-
trices are systematic replacing the entries in the weight-1
columns ofHbasewith the identity matrix will ensure a sys-
tematicHpermswhich is easily encoded via back-substitution.
Since the choice of base matrix fixes the packet erasure cor-
rection, we also have the flexibility to choose the permutation
matrices to improve the code’s resilience to random erasures
in the received packets. In particular, permutations for the
non-zero entries in the columns ofHbasewith weight greater
than one can be chosen so as to avoid small cycles inHperms.

When the base matrix is not systematic circulant permu-
tation matrices can be used for the superposition to ensure
quasi-cyclic codes and thus ease of encoding (as in [15]). We
denote byI i the cyclic shift byi columns left of the identity
matrix I . A 4-cycle freeHpermscan be constructed by choos-
ing the values ofi for each circulant so that the difference in
shift values between the two entries of the 4-cycle in one col-
umn ofHbaseis not the same as the difference in shift values
chosen for the two entries of the 4-cycle in the other column
of Hbase.

Further, by using circulant permutations and swapping
columns between packets we can design codes which can
correct more packets than is guaranteed by Lemma 5. For
example, using the base matrices from (1) the non zero en-
tries in the first row and first two columns are replaced by the
v× v identity matrix I and the second non-zero entry in the
j-th column, for j > 2, is replaced by thev× v matrix I j−2.
Then the lastj − 2 columns in thej-th circulant ofHperms,
for j > 2, are swaped with columns from the first two circu-
lants which share a common non-zero entry. The resulting
codes are then able to correct up toSmin packet losses using
message passing decoding.



3. SIMULATION RESULTS

Figs. 1 to 4, show the performance of LDPC codes on packet
loss channels withNp = N packets per codeword. Codes of
rate-1/5, rate-1/4, rate-1/2, rate-2/3 and rate-5/6 are sim-
ulated. The rate-1/5, Np = 5 and rate-1/4, Np = 4 burst er-
ror correcting codes (shown in Figs. 1 and 2) are from the
MDS-MPA base matrices in (3) and are guaranteed to correct
Np−1 lost packets if the remainder are erasure free. The rate-
5/6, Np = 30 codes use a Hamming code as the base matrix
and so are guaranteed to correct at least two lost packets if
the remainder are erasure free. The rate-1/2, Np = 14 codes
(shown in Figs. 1 and 2) use a2-(7,3,2) design for the base
matrix while the rate-1/2, Np = 10 codes (shown in Fig. 2)
use the base matrix from (5) and so both are guaranteed to
correct at least three lost packets if the remainder are erasure
free. Finally, the rate-2/3, Np = 6 codes (shown in Fig. 4),
and the rate-1/2, Np = 4 codes (shown in Fig. 3), use the base
matrices given in (1). Three different burst error correcting
codes are constructed from these base matrices, the first is
traditional interleaving (by using identity matrices for the su-
perposition), the second uses superposition with permutation
matrices chosen to avoid small cycles and the third uses cir-
culant matrices for the superposition combined with column
swaps to increase the packet loss protection.

Also shown in Figs. 1 to 4 is the performance of pseudo-
randomly constructed LDPC codes with the same rate and
length, but with all columns weight 3, and constructed to
avoid small cycles using the method from [16]. To choose
a particular code the average monte-carlo performance of
the ensemble has been found by pseudo-randomly generat-
ing a new parity-check matrix for each codeword transmitted.
Then, by trial and error, using pseudo-randomly constructed
codes and simulation, a particular parity-check matrix has
been found which performs better than this average. It is this
parity-check matrix which is used to simulate the pseudo-
random performance in the figures. The maximum number
of decoder iterations for all of the codes is set to the number
of code parity-check equations.

Figs. 1 and 2, show the performance of LDPC codes on
noisy packet loss channels withNp = N packets per code-
word and a fixed number of small, lengthLp = 10, packets
lost. In every case the LDPC codes formed from the base
matrices in Section 2 using superposition produce signifi-
cantly better performances than the pseudo-random LDPC
codes. The codes formed using permutation matrices for
the superposition produce significantly better performances
than the codes formed using identity matrices for the su-
perposition in all but the MDS-MPA codes where they per-
form equivalently. Further, the codes constructed using su-
perposition offer guaranteed burst erasure correction perfor-
mance in a purely packet loss channel and have the advantage
of straightforward encoding implementation, advantages not
shared by the pseudo-randomly constructed LDPC codes.

Figs. 3 and 4, show the performance of LDPC codes on
packet loss channels withNp = N, lengthLp = 100, pack-
ets per codeword and a random packet loss probability. The
LDPC codes formed using superposition outperform tradi-
tional pseudo-randomly constructed LDPC codes, with the
codes formed using cyclic permutations for the superposi-
tion giving the best performances. The codes constructed
using cyclic permutations offer a guaranteed packet correc-
tion performance and have the advantage of a straightfor-
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Figure 1: The performance of LDPC codes on a packet loss
channel with 2 packets lost per codeword and varying ran-
dom erasure rate in the received packets. Dashed curves
show LDPC codes formed using superposition with an iden-
tity matrix, solid curves show LDPC codes formed using
superposition with permutation matrices and dotted curves
show the performance of column weight-3 regular LDPC
codes with 4-cycles removed.
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Figure 2: The performance of LDPC codes on a packet loss
channel with 3 packets lost per codeword and varying ran-
dom erasure rate in the received packets. Dashed curves
show superposition using an identity matrix, solid curves
show superposition using permutation matrices and dotted
curves show the performance of column weight-3 regular
LDPC codes with 4-cycles removed.

ward quasi-cyclic encoding implementation, with only min-
imal additional complexity for the column swaps between
packets.
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Figure 3: The performance of rate-1/2 LDPC codes with
Np = 4 packets per codeword on a packet loss channel with
varying packet loss probability.
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Figure 4: The performance of rate-2/3 LDPC codes with
Np = 6 packets per codeword on a packet loss channel with
varying packet loss probability.

4. CONCLUSION

In this paper we have designed LDPC codes for packet loss
channels using superposition on carefully designed base ma-
trices. The very simple implementation of message passing
decoding, and the ease of encoding provided by the struc-
tured codes, suggests that LDPC codes constructed in this
way represent a promising candidate for applications which
suffer from both random and packet losses and face low com-
plexity or high throughput constraints. Future work will ex-
tend the code designs considered here to more complex chan-
nels with error bursts.
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