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Abstract: This paper considers the estimation of Hammerstein models with input
saturation. These models are characterised by a linear dynamical model acting on
an input sequence which is affected by a hard saturation of unknown level. The
main result of the paper lies in a specification of a set of sufficient conditions on
the input sequence in order to ensure that a non-linear least-squares approach enjoys
properties of consistency and asymptotic normality and furthermore, that an estimate
of the parameter covariance matrix is also consistent. The set of assumptions is
specified using the concept of near epoch dependence, which has been developed
in the econometrics literature. Indeed, one purpose of this paper is to highlight
the usefulness of this concept in the context of analysing estimation procedures for

nonlinear dynamical systems.
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1. INTRODUCTION

This paper deals with the identification of models
which might appear to be very specific. How-
ever, this class of systems have been analysed
and applied in many different settings (Tao and
Kokotovié, 1996; Rangan et al., 1995; Suykens and
Wandewalle, 1998).

Indeed, the hard saturation considered in this
paper seems to be a realistic assumption in many
applications, since usually the control input sig-
nals can only be applied in a certain interval
due to technical limitations. Examples include

1 Some of the work for this paper has been done while this
author was visiting the Department of Automatic Control,
Linkdping University, Sweden.

the angle of a rudder, the opening of a valve,
the power input to an electrical motor (Tao and
Kokotovié, 1996).

In one sense, the results considered in this paper
are not particularily new. For example, (L.Ljung,
1978) states conditions, under which nonlinear
least squares estimators are consistent in a very
general framework.

However, the difference between these pre-existing
results and the results of this paper are that here,
by virtue of a particular stochastic framework
applied, the structure of the required assumptions
is significantly different in a way that may be more
natural in applications of the results.



Specifically, whereas (L.Ljung, 1978) uses assump-
tion imposed on the measured input and output
data which imply certain properties of the non-
linearities, our assumptions are imposed directly
on the the nature of the non-linearities.

Since we are dealing with consistency and asymp-
totic normality we need the notion of a true sys-
tem. However, we want to emphasize that results
in the spirit of (L.Ljung, 1978) in which no such
true system exists can also be handled by the
framework used in this paper.

A key feature of this paper is the introduction
to the engineering community of tools provided
in (Potscher and Prucha, 1997) in the context of
non-linear models arising in econometrics and, in
particular, the idea of ‘L, near epoch dependence’
proves to be of great utility.

This latter concept formularises the dependence
of a process on some other underlying process,
and it is made powerful by the fact that some
of the properties of the underlying process can
be transferred to the process under investigation
and furthermore, these properties are retained
under a wide range of non-linear and dynamic
transformations.

It is the aim of this paper to demonstrate the
application of these tools and concepts in order
to find sufficient conditions on the addititive noise
and the input sequence in order to guarantee con-
sistency, asymptotic normality and consistency of
an estimate of the corresponding covariance ma-
trix for nonlinear least squares estimates.

The paper is organised as follows: In the next
section we describe the model set and present the
necessary concepts. Section 3 then provides some
facts for the concept of L, near epoch dependency.
In section 4 the main results of the paper are
stated. Section 5 finishes with a discussion of the
obtained results.

2. MODEL SET AND ESTIMATION
CRITERIA

In this paper we deal with discrete time Hammer-
stein models with input saturation which can be
described in the following form:

Vi = f(ut,i;al,i;a2,z’)

Ti41 — AiL't + B’Ut (1)
Yy = Cxzy +ny
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It will always be assumed that ¢ < a;; <
az; < ¢ for some —o0o < ¢ < € < oo. Let
a € A C R? denote the vector of stacked
saturation points. In the following we will also
use the notation vy (us, ) to denote the vector of
functions f(ut,i, 1,4, @2,;). It will also be assumed
that (A,B,C) = (A(B),B(8),C(B)), i.e. that
the system is parametrised by some parameter
vector § € ®. The parameter set ® is assumed
to be compact and {(A(83),B(8),C(B)) : B €
®} is assumed to contain only stable transfer
functions. We will also use the notation G(g, ) =
C(qI — A)~'B. The direct feedthrough term is
only neglected for notational reasons and a term
D(6) could be included without changing any of
the results of this paper. The full parameter vector
0 then is defined as 0§ = (a,) € O. Here the
parameter set O is again assumed to be compact.
In this set there might be nonminimal systems
in the following sense: If e.g. the first column
of B is zero, then the saturation of the first
component of u; cannot be determined, since this
coordinate of the input does not contribute at all
to the output. Therefore all saturation parameters
in this coordinate correpond to the same output
behaviour and thus the level of saturation cannot
be identitified. Throughout the paper a system
will be called minimal, if each single input system
G(q,0)e;,1 < i < m is nonzero, where e; denotes
the i-th vector of the canonical basis.

The estimation criterion we will consider is non-
linear least squares, i.e. the estimate 6 is defined
as the minimising argument of

~ 1
6 £ argmin —Tr
geo T

T
Y Z et(é?)et (0)']

t=1

where ¥ € RP*? is user defined and e;(0) = y; —
7:(0) denotes the one step ahead prediction error
according to the model specified by 6 as:

:l//\t (0) = G(q, 0)vt (ut, 0)

This implies that we do not model the noise n;.
Similar results can be obtained if the noise is suit-
ably modeled as an ARMA process and estima-
tion is performed by pseudo maximum likelihood
estimation (i.e. using the Gaussian density as the
criterion function). The choice of the user defined
parameter ¥ influences the estimation accuracy.
In the case, where n; is white noise with zero
mean and variance equal to {2 then the optimal
choice is equal to ¥ = 27!, and then the estimates
are asymptotically efficient and equivalent to ML
estimates. In general however n; will be correlated
and the usual choice of ¥ will be the identity.



3. NEAR EPOCH DEPENDENCE

The assumptions on the input and the noise
will be stated in the concept of L, near epoch
dependency which is defined as follows:

Definition 1. A scalar process {y;} is called L,
(p > 1) near epoch dependent (n.e.d.) on some
basis process {e;} of size —q,q > 0, if

supB{(yr — E{ys | er4m,- > et—m}P}/? = ¢(m)
teN

where ¢(m)/m? — 0. A vector process is called
L, n.e.d. of size —q on {e;}, if each component is
L, n.ed. of size —q on {e;}.

Thus the size of the n.e.d. gives a hint on the mag-
nitude of the influence of the underlying process
{es} for times far apart. The index p indicates the
norm in which the deviations are measured.

In the following we will use a more restrictive
framework in order to make the exposition sim-
pler. Throughout the paper we will assume, that
the underlying process {e;} is i.i.d. It will also be
assumed, that a L, n.e.d. process {y;} is strictly
stationary. Both additional asumptions are not
minimal in the sense that similar results can be
obtained for much weaker assumptions. However
for notational simplicty we choose this framework.

To give an example of a L, n.e.d. process consider
the process

0
Xt = Z Kjet_j
j=0

where {e;} is i.i.d. with finite second moment. If
2 it I1El3 < m ™29, then {X;} is L n.e.d. on
{es} of size —r for all 7 > g. Thus if the filter {K}
corresponds to an ARMA system, then {X;} is Lo
n.e.d. on {e;} of any size gq.

Some of the properties of L, n.e.d. processes
are collected in the next lemma. For proofs and
additional references see (Pdtscher and Prucha,
1997).

Lemma 2. Suppose that

(1) g(s) fulfills the following Lipschitz type of
condition on each compact subset = of its
domain: For every compact = there exists a
constant C(Z) such that for s, s’ € E we have
that for some p > 1 it holds that

llg(s) = g(s)llp < CE)lIs — 5l
(2) {X;} is a scalar strictly stationary process

such that E{|g(X;)["} < oo for some p > 1.
(3) {X:}is L, n.e.d. on {e;} of size —q.

Then the following holds:

i) The process {g(X;)} is also L, n.e.d. on {e;},
but maybe of a different size. If C(Z) = C

independent of = then {g(X;)} is L, n.e.d.
of size —q.

ii) For every finite integer k& > 0 the process
{[X{, X{_1,---,X] ]} is Lp need. on {e;}
of size —q.

iii) If {X;} is L, n.e.d. on {e} of size —q
and {Y;} is L, n.e.d. on {e}} of size —¢
then {[X{,Y/]'} is L, n.e.d of size —¢q on
{[(e?)", (el )'T'}-

iv) If {X;} is a vector, such that each component
is L, n.e.d. on {e;} of size —g and f§ is of
suitable dimension, then {f'X;} is L, n.e.d.
of size —q on {e;}.

v) {X:}is L, n.e.d. on {e;} of size —r,r > gq.

vi) {X;} is Ly n.e.d. on {e;} of size —q for all
P <p.

vii) Tf B{|X,|"'} < oo, then {X,} is L, n.e.d. on
{e+} of size —q for all s < p'.

Vlll) If Y;H-k = g(Y:‘nXta T aXH-k)a where

|g(Y;5:Xta"' aXt+k) _g_(Y_;f)XtJ"' JXt_+k_)| S

dy|Y;5 - YH + dz”(Xt - Xt; T 5Xt+k - Xt-i-k)”a

0<dy<1l,d, <00

then {Y;} is L, n.e.d. on {e;} of size —g.

ix) If B{||X;]|;*} < o0o,e > 0 and if {e;} is
iid. then {X;} fulfills a weak law of large
numbers, ie. N7! Z;V:1 X; — EX;, where
convergence is in probability with N — oco.

x) Let {X;} be Ly n.e.d. on {e;}, which is i.i.d.,
of size —1 and satisfies EX; = 0, E{| X;|"} <
oo, r > 2. Further define

1 N N !
Py=+E > X, (ZXt>
=1 t=1
Assume, that Py — P. Then

N
N3 "X, = N(O,P)
t=1
as N — oo, where convergence is in distri-
bution and N (0, P) stands for normal distri-

bution with zero mean and variance matrix
P.

Point i) states the invariance of the concept under
nonlinear transformations fulfilling Lipschitz type
of conditions, and these apply for a large class
of practical relevance such as wavelets, sigmoidal
functions used in neural networks and polynomi-
als.

If the Lipschitz bound is required to be indepen-
dent of the set, then polynomials can no longer
be used without further requirements. These ad-
ditional assumptions include higher moment con-
ditions, see (Potscher and Prucha, 1997, Chapter
6) for a discussion on this topic. ii) - iv) show
that the concepts are robust with respect to lin-
ear transformations. v) - vii) provide an ordering
of sizes and norms used. viii) shows, that some



dynamic transformations are allowed with n.e.d.
processes. Crucial for the argument here is the
restriction d, < 1. However the condition is not
as restrictive as it might seem on first sight, since
the condition has to hold only for some k. Con-
sider a multivariate autoregression of first order
Zt+1 = Axy + Bug. Even for stable A the norm
|[Al|2 can be larger than 1. However, since all
eigenvalues of A lie strictly inside the unit circle
due to the assumed stability, then there exists a k
such that ||A*||s < 1. Considering .y = A*z; +
Zf;é A/ Bugyr—; then shows the n.e.d. of {z;}
on {u;}. Finally ix) and x) will be central for the
investigation of asymtptotic properties, since they
allow one to transfer law of large numbers and
central limit theorems from the underlying process
to the n.e.d. process by checking simple moment
conditions.

These tools will be applied in the following in the
analysis of the estimates using the model structure
described in section 2.

4. ASYMPTOTIC PROPERTIES

In this section the asymptotic properties of the
least squares estimate 6 are analysed. The discus-
sion will provide a consistency result, the asymp-
totic normality of the parameter vector and finally
also a procedure to assess the variance matrix of
the limiting normal distribution will be given and
consistency thereof stated.

Theorem &. (Consistency). Let {y;} be generated
by a system of the form (1). Assume that the
additive noise {n.} is a strictly stationary process,
which is Lo4. (€ > 0) n.e.d. on {e}'} (i.i.d.), where
En; = 0,E{||n¢]|*™*} < o0 and E{|[e?|***} < oo.
Let the input {u;} be a strictly stationary process,
which is Lat. (¢ > 0) n.e.d. on {e}} (i.i.d.), where
E{|Ju¢||***} < oo and E{|le¥||***} < oo. The
input is assumed to be independent of {n;}. As-
sume, that the model order is known. The param-
eter set is assumed to be compact. Corresponding
to the input we assume, that the stationary dis-
tribution of [uj,--- ,u}_s,]" has a density, which
is strictly greater than zero on [—c,¢*"*1. Also
assume that the order of the system n is known.
Finally assume, that the true system is minimal.
Then the estimate 8 € © converges in probability
to the true parameter value 6,.

PROOF. The proof consists of showing all the
conditions given in (Bauer and Ninness, 1999),
Theorem 5.1. The assumptions stated there in-
clude the parametrisation of the linear model
structure, which was done in the same way as in
the present contribution. The assumptions on the
nonlinear model structure are easily verified, as

the function f(u¢, @) clearly is Lipschitz continu-
ous with uniform Lipschitz bound one. Assump-
tion set 3 in (Bauer and Ninness, 1999) includes
the assumption of a true model, assumptions on
the noise and the input process identical to the
present one, except for the condition on the den-
sity of the input. The moment bounds are obvious
from the nature of the nonlinearities and the uni-
formity over the parameter set is ensured by the
compactness assumption on A. Thus it only re-
mains to verify the identifiability condition. Since
it is clear that the asymptotic criterion function
V(0) = limy_,oo Vr(#) is minimised at 6., it is
only necessary to show that 7;(61) = 7:(6,) for
all ¢ with probability one if and only of #; = 6,.
The above equality can be reformulated, using
the vector Y;fk(al) = [:/y\t-i-k(ai)la"' ,@\t(oi)l]l7 as
Y (01) = YF(8,). It follows from the recursions
defining the linear dynamical system that

Ok (Wepk, 07)
Y (6;) =T :
vg (ug, 0;)

Here II is a projection onto the orthogonal com-
plement of the span of the columns of the two
observability matrices. I'; is II times an upper
triangular matrix of rank at least (k+1—n)p and
thus I'; has rank at least (k + 1 — n)p — 2n. The
identifiability condition is equivalent to the condi-
tion Y;*(6;) = Y}¥(6,), k > 0 with probability one.
Now assume that o' # o°. If e.g. af ; < af ;, due
to the assumption on the input density for &k = 3n
then with nonzero probability we can construct
sequences, lying in some set S say, such that all
other variables are saturated and a%,l < ugr <
aj ;- Thus f(ut,l;ah) = ut,laf(utaail) =a3,.
Then it follows from the nonminimality that on
S the equality Y?"(01) = Y;*™(6,) cannot hold,
since there Y;*"(6,) is constant, whereas Y;*"(;)
is not. This shows the identifiability condition and
concludes the proof.

Similar arguments would be possible for strong
consistency results involving higher moment con-
ditions on {n;} and {u;} and also a restriction
on the size of the n.e.d. It is remarkable that
in the nonlinear case, assumptions on the second
moments alone are not sufficient for consistency.
This can be seen eagsily by using discrete distribu-
tions. The condition on the desnity is fulfilled (for
example) if

oo
— u
U = E Kjet,j
Jj=0

where {e}} is i.i.d. with a density, where the
support is equal to R™ and K is nonsingular.
Thus e.g. if {u;} is an ARMA process driven
by Gaussian noise, the condition of the Theorem
holds.



In order to show asymptotic normality only a few
more assumptions are needed:

Theorem 4. (Asymptotic Normality). Let the as-
sumptions of Theorem 3 hold. Furthermore let 6,
be an interior point of © and let the size g of the
n.e.d. of both {n;} and {u;} be such that ¢ > 1.
Let u; = ef + )5, Kjey ;, where ej' has density
with support R™.

Then with the definition of the Hessian matrix
d2
R(eo) = hm Ed09'|0 QOVN(G)

it holds that R(6,) > 0. Further under these
conditions

VN@ - 6,) = N(0, P)

where convergence is in distribution and P, =
R(0,)71QoR(6,)~! denotes the asymptotic vari-
ance matrix.

PROOF. The proof is a consequence of Theorem
6.1. of (Bauer and Ninness, 1999). The assump-
tions which are needed in excess of the ones of
Theorem 3 mostly concern derivatives, which are
no issue here, since the first order derivative of
f(ug, @) is piecewise constant, taking on only two
values: zero or one. The points of nondifferentia-
bility are a nullset and thus can be neglected.
Therefore the second derivative is zero almost
everywhere. Here the existence of a density for
uy is essential.

The last statement, which has to be shown is that
the asymptotic Hessian R(6,) is nonsingular. To
this end consider

EVy( <N2¢t )Sthe(60)'+

d2
Wet (00)'211,5)

where the second summand is zero due to the
zero mean assumption on n; and the independence
of input and additive noise. Here ¢;(6,) denotes
the matrix, whose j-th column is equal to the
transpose of

(6 = | 6]
Due to the stationarity assumption it is enough
to consider only one term. That is, singularity
of EVy(f) implies that there exists a vector z
such that z'¢,(8,) = 0 for almost all input se-
quences. In order to deal with this term, exam-
ine the derivative with respect to the truncation
bounds more closely. For given input u the func-
tion f(u,a1,as) is equal to oy for u < a1, equal
to u for u > ;. Thus the derivative with respect
to oy is equal to one and zero respectively on the

respective areas. Analogously the derivative with
respect to the parameters as can be derived. Since
the input has a density, which is nonzero on [c, ],
it is possible to design input sequences with pos-
itive probability, which are not saturated in any
variable. Therefore all the derivatives with respect
to parameters in a are zero. From this it follows
from similar arguments as have been used in the
proof of Theorem 3 that the summand due to
the linear subsystem must be zero, which in turn
implies that the parametrisation of the linear sub-
system is nonminimal, which is a contradiction.
Thus the coordinates of x corresponding to the
liner system have to be zero. Similar arguments
show the nonsingularity by choosing inputs, which
lead to saturations in all but one coordinate. This
shows, that z = 0 and thus the nonsingularity of
R(8,). This finally concludes the proof.

The authors want to emphasize, that the con-
ditions given in the theorem are only sufficient,
but not necessary. It seems to be plausible, that
weaker assumptions on the input sequence also
suffice. This is a topic of further research.

Finally the estimation of P will also be considered.
Again we follow the suggestions of (Potscher and
Prucha, 1997). It follows from the proof of the
central limit theorem 4 that P is equal to the limit
for N — oo of

R(0. < E Z U
s,t=1
(From the definition of R(6,) it follows, that this

quantity can be estimated consistently from the
data as

o) Sngpd (6 )'Ent> R(#,)7!

6,J

d2

a5 "V Olo—g
In fact this is shown in the proof of Theorem 4.
Therefore it remains to show the convergence of
the expectation given above and to provide a
technique to estimate this limit. Thus consider

1.
—EZ¢;(

|l|

Ent Z 'lp] Ent

T-1
=1—

S L [E¢f(60)¢8(00)'2En0n;E] >

l T

oo

Z Tr [E¢{ (6)5% (ao)'zEnon;E]

l=—00
Here the convergence of the sum has to be en-
sured by conditions on n; and 9¢(6,) to have
covariance sequences tending to zero sufficiently
fast. A straightforward idea would be to use the
second expression and replace true covariances
with estimated ones. However this does not lead
to consistent estimators, since the estimates of
variances with high lags are known to be very
poor. Therefore the accuracy of the above esti-



mator might be increased by introducing weights
(see Potscher and Prucha, 1997; Hjalmarsson et
al., 1994). For | > 0 let

LI
al(iﬁ;i;j) = N Wﬁ(e) §+l(0)l
t=1
= R
Nn) =5 2 u(0)new ©)'

~ ~

1
where 7;(0) = v — 3:(0). Then consider the
estimate

R T—1

On=3 wl, NYTr[i,i, )5 (n)S]

I=1-T

The estimate differs from the true quantity given
above in that true covariances are replaced with
estimates and that the weights (N — |I|)/N are
replaced with w(l, N). In the framework of The-
orem 4 it can be shown, that this estimate @N
converges in probability to Q.

Theorem 5. Let the conditions of Theorem 4 hold
and let the size of the n.e.d. of {n:} and {u;}
be —2(r — 1)/(r — 2) for some r > 2, such that
E{||n¢||*"*°} < oo. Then if w(l, N) satisfies

max |w(l,N)| < o0
NEN,0<I<N

lim w(l,N)—1
N—o0

N
ngnoo;uw(l,zvn < 00

the estimate @ N — Qo in probability.

The proof follows in a straightforward fashion
from the verification of the assumptions of The-
orem 7.1. of (Bauer and Ninness, 1999), which is
based on the corresponding theory developed in
chapter 13 of (Potscher and Prucha, 1997).

The question of the choice of the weighting se-
quence w(l, N) is given a heuristic interpretation
in (Po6tscher and Prucha, 1997): jFrom the defini-
tion of the estimated quantity @), it follows, that
it essentially is the spectrum at frequency zero of a
stationary process, which is estimated. Therefore
the weighting w(l, N) can be chosen according to
the same rules, which govern the choice of spectral
estimates.

5. CONCLUSIONS

In this paper the concept of near epoch depen-
dence is applied to a rather simple model struc-
ture. It has been shown, that the use of this con-
cept leads to the derivation of the usual asymp-
totic properties of least squares estimators based

on assumptions on the input and the model struc-
ture as well as the existence of a true system
rather than on assumptions on the input, output
data. The concepts used in this paper seem to be
valuable tools for the analysis of nonlinear dynam-
ical systems, as they take care of the fact, that for
nonlinear systems different kinds of dependence
structures have to be used than only relying on
second moments, as is done for linear dynamical
systems.

The analysis of the Hammerstein models resulted
in the simple fact, that we are able to identify
the true model (if it exists) consistently, with
asymptotically normal parameter estimates, of
which the accuracy can be estimated consistently
from the data, based solely on the assumption,
that the parameter space is compact (i.e. we have
some kind of a priori knowledge on the location of
the parameter) and that we are able to construct
input sequences, which vary reasonably in this set
and are not limited to a finite number of setpoints.
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