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Abstract— Recentanalysis of linear multiuser recevers for DS-CDMA
signals has considered signal-to-interference (SIR) performance in large
systemswith eachuser employing random spreading sequencesUnfortu-
nately, it is only in the specialcaseof the receved powers of all usersbe-
ing equal that a resulting integral equationfor SIR hasan explicit solution
with demonstrable approximation accuracy for finite-sized systems. This
paper presentsan alternative approachto calculating the SIR performance
of MMSE recevers which relies primarily on the law of large numbers,
and providesan estimatefor SIR that is valid for arbitrary distrib utions of
receved interferer powers.

|. INTRODUCTION

The problem consideredhere is that of minimum mean-
square error (MMSE) detection of direct-sequencecode-
division multiple accesgdDS-CDMA) signals,with a focuson
providing a simple approximationof the interferenceexperi-
encedby a givenuserdueto otherusersandbackgrounchoise.
The natureof studypursuechereis inspiredby recentindepen-
dentworks[1] and[2], andin particularthe latter whereatten-
tion is targetedon quantifying the signal-to-interferenceatio
(SIR) in sucha mannerthat the contributions of the various
effects of processinggain, recevved powers of interferersand
backgrounchoiseareclearlyexposed.

Thereare two key tools employed in [2], [1]. The first is
to modelthe spreadingsequencesf individual usersasrealiza-
tionsof independenandidenticallydistributed(i.i.d.) stochastic
processeblaving zeromeanandunit variance seealso[3]. The
seconds to recognizethatthe SIR, beinga quadraticform of a
randommatrix,dependgxplicitly ontheeigervaluedistribution
of thatrandommatrix. Recentresultsfrom the mathematical
statisticsliterature[4] characterizinghis distribution may then
beemployedto provide expression®f engineeringelevance.

This approacHeadsto akey result[2, Theorem3.1] thatpro-
vides an approximationfor the SIR underthe assumptiorthat
both the numberof usersand the length of the spreadingse-
guencesrelarge,but thattheirratiois fixed. Unfortunatelythis
expressionis only availablein animplicit form which requires
the solution of a certainintegral equation. As a consequence,
in [2] a closed-formSIR approximationis only available for
the specialcasewhenthereceived powersof theinterferersare
equal.

Furthermore the methodsusedto derive the resultsin [2]
involve relatively sophisticatednachinery including Stieltjes
transformsand distributions which must be understoodin a
measure-theoretisgense.Thesemay prove to be a limiting fac-
torin thepenetratiorof theresultsandtheunderstandingf their
genesis.

By way of contrast,this paperillustrateshow SIR approxi-
mationsfor MMSE recevers may be derived using only very
simpleideas,namelythe Matrix InversionLemmaandthe Law
of LargeNumbers.Theresultingclosed-formexpressiorfor the
asymptoticSIRis obtainedor arbitrarydistributionsof receved
interfererpowers.

Il. SIGNAL-TO-INTERFERENCE PERFORMANCE OF MM SE
RECEIVERS

Of interestis thefollowing chip-sampledliscrete-timanodel
for asymbol-synchronouBS-CDMA system
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wherez; € R is the symboltransmittedby the i'th userwho
possessespreadingsequences; € RY. Thelengthof the sig-
naturesequence; isthusNV, whichis alsotermedthe‘process-
ing gain’, andhencevia (1) therecevvedvectorsignaly € RN
consistsof the linear superpositiorof the signalssentby all K
usergogethewith theadditive vectornoiselV € R™. Here,as
in [2], this noisewill be modeledaswhite andGaussiarsothat
W ~ N(0,02I).

Furthermorethe symbols{z;} will alsobe modeledasran-
dom variables,independenbf one another and suchthat the
meanandvariancesatisfy

E{z;} =0, E{m?}:pi

sothatp; is therecevedpower of usernumberi.
For the purpose®f demodulatinghe signalsentby useri =
1, it is thenusefulto think of therecevedsignalas

Y=x5+7 (2

wherenow Z € RN represents compositedisturbanceo the
receptionof the signalfrom userl, andconsistsof thereceved
signalsof all otheruserstogethemwith the backgrounchoise:
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Therefore, the varianceof Z conditional upon the receiver

knowing the signature sequences {sz, - -, Sk } IS
tgrPy £E{ZZ" | S} = SDST +o°I
where
p2 0 0
S21[8y,85,--,5¢], D= 0 P
6 Pk

In orderto form thedemodulatedstimatez; of thetransmitted
symbolz; theclassof linearreceversof theform

7 =CTy, C e RN

is of interest.As establishedh [5], the choice
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C=(S:1ST +Py) 'p)S; = ——Z =
(p1S157 'z) " P15t 1+p1SfPZ_IS1

(3)



proviacstne optimalimeansqgquaracitor solationtnatiminimizes
bothE{(z; — CTY)? | S} and

A mE {(CT51)2 | S}
- CTPzC

over the classof all linear recevers. The quantity S is the
signal-to-interferenceatio (SIR)for thereceptiorof aparticular
user(in this caseusernumberl), andis a usefulfigure of merit
in consideringhe performancef DS-CDMA systemg5], [2].

Substituting(4) into (3) impliesthatthe optimal SIR for the
classof linearreceversis

Bn =mSTP;*S1 =piST(SDST +o*1)7'S,.

Bn

(4)
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It is of interestto studythis expressionin orderto gaininsight
into how theoptimal SIR is affectedby suchfactorsasthedistri-
bution of receved pawers(accordingto the diagonalentriesof
D), andtheratioa = K /N of numberof usersK to processing
gain(spreadingsequencéength) V.

I1l1. PREVIOUS WORK

Previouswork hastackledthe questiorof gaininginsightinto
(5). In particulartherecentstudieq2], [1] have recognizedhat
(5) is expressibleas

BN =p i\’: (ue)
= Ak +

2
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wherethe numbers{\; } arethe eigervaluesof SDST andthe
numbersuy arethe projectionsof the elementsof S; ontothe
unit length eigervectorsof SDS? (associatedvith the eigen-
values{\;} in turn). If g()) is thenthenumberof eigervalues
in aregion A centredon )\, then[2] alguesthatin somesense
u? =~ g(\r)/Ar andhencein thelimit asN — oo andasthe
regionsAy, shrink,

A}gnoo BN =B=p | (6)
Obtaining further clarification then pivots on gquantifying the
eigervaluedensityg(A). Thekey contributionin [2], [1] (see
also[5]), is to modelthe spreadingsequence$S; } as
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wherethe elements{V,(j)} areidentically distributedrandom
variablesthatareall independentor differentk or j, andsuch
thatE{V%(j)?>} = 1 for all kK andj. For technicalreasonst is
alsoassumedhat E{|V; ()|*} = & < oo.

Theresultsof [4] may thenbe appliedto characterizgy(\);
specifically g is suchthatthe following integral equationholds

forall z € C,Re(z) > 0:
7Tf(T) dr — z) -
2) '

(a/ooo 1+ 7m(

Herea = K/N, f(7) isthelimiting density(i.e. limiting shape
of thehistogram)f therecevedpowersmakingup thediagonal

entriesof D, and
m(z) = /
0

m(z) (8)

g(N)
A—2z

da, (9)

WHeETEeIlt 1s assdiriedrnattrieinalcatedaerisitie exist, otrerwise
Stieltjesintegralsinvolving distributionsarerequired.

A key point is that the above eigervalue characterizatioris
implicit sincethe sametermm(z) appearn boththeleft and
right handsidesof (8). As aconsequencayhile thework [2] is
ableto provide mary insightsinto thenatureof powercontrolon
DS-CDMA systemsit is only ableto characterizehe limiting
SIR for the caseof all therecevedpowersbeingequal(py = p)
in which casethe density f(\) becomesa Dirac delta f(\) =
d(X — p) sothat

/
Noting that(6) and(9) imply m(—o?) = 3/p, andsubstitut-

ing this and (10) into (8) evaluatedat z = —o? thenindicates
thatin the equalpower case
-1
+ 02)

B _ ( op
p 1+8
whichis quadratidn g with positive solution
%+2}7\/p2(1 —a)? 4+ 2po%(1l + a) + o*.
11)
Unfortunatelyit appearshatthis caseof equalrecevedpowers,
by virtue of the Dirac densityit impliesfor f(\), is theonly sit-
uationin which the characterizatioi8) maybeappliedin order
to provide anexplicit solutionfor thelimiting SIR 3.

The purposeof this paperis to illustrate how an alternatve
stratgyy for analyzing(5), by meansof avoiding directcharac-
terizationof the spectraldistribution of the matricesnvolved,is
ableto provide an expressiorfor 8 which appliesfor arbitrary
receved power distributions. As an ancillary benefit,the argu-
mentsusedalsocall uponlesssophisticateanathematicaldeas
thanthe pre-&isting approachust outlined.
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1+ 7m(z) TT1 +pm(z)’ (10)
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IV. A NEW ANALYSIS

Thekey tool whichwe applyto theanalysisof (5) is thestrong
law of large numbers Specifically if {X}} is asequencef in-
dependentandomvariablesfor which certainregularity condi-
tionsapply (seeTheorem? in the Appendix),the stronglaw of
large numbersassertghat

N

U3 (X~ E{X}) =0,

lim — .p.
im w.p.1
k=1

(12)
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wherethe “with probability one” (w.p.1) epithetindicatesthat
theabove limit mayonly fail to hold ona subsef)’ C Q (of the
underlyingprobability space{(?, F, P} onwhichthe { X} are
defined)for which P(£)') = 0. Theintuitive understandingf
this law is thatif E{X}} = X for all k, thenfor “large” N, the
approximation

1 1
=) Xpm <> E{X}=X
Nk:l Nk:l

is likely to beaccurate.

The purposeof this sectionis to shav how this principle can
beusedto provideinsightinto (5). While perhapghefirsttemp-
tationwould be to applythe stronglaw of large numberso the



o Lo Eelmin (o) I alatteimptio approximatat oy a diag-
onal matrix, this approachis fraught with difficulty since, by
construction,SDS? is rank deficientso that no diagonalex-
pressioris likely to be anaccurateapproximation.indeed,one
view of the existing work [2], [1] is thatit dealswith precisely
this difficulty by way of eigervaluedistributions.

In recognitionof thesepitfalls, this papertakesan alternative
approaclby usingthe matrix inversionlemmal6], which states
that

[A+ BCD]™' = A" —A7'B[C~' + DA™'B]'DA™!

for arbitrarymatricesA, B, C, D of compatibledimensionsand
suchthat indicatedinversesexist. Application of this to (5)
yields
By = %s{ [[—S(°>D™" +579)7157] S, (13)
Denotingby [A] ... them, n’th elementof an arbitraryma-
trix A, thenundertherandomvariablemodel(7)

1 N
= = 3 Vo1 (Vo ().

= (14)
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Using X, = Vpt1(k)Vayi(k) in the strong law of large
numbersresult (12) and, by the independenceassumptions
E{X}} = §(m — n) with § beingthe Kronecler delta, thefol-
lowing approximation(valid for large N) follows:

STS ~ 1.

Thusfor large N

By ~ % (ST — STSESTS,] (15)
where
e 19)
Now, againby (7) and(12),
1 & 1 Y
SiSi=5 Vi)~ BE{Vi(R}=1. (a7
k=1 k=1
Denoting
s 1
M= 5 T; Vi(n)Vi(n) (18)
it followsthat
K n2
SsTsxsts, = ; W:H (19)

andtherefore againby (12) andnow for large K,

E{n}}
o?/pr +1

K

1
K12
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1
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STsysTs) ~

Furtnernmore,0y e achnituon (Lo) andtrne inacpenacerncand
unit varianceassumptionsn {V;(n)},

1 N N
= Z Z E{Vi(n)Vi(n)Vi(m)Vi(m)}

n=1m=1
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el 2231 E{vmVi(m)} =+
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sothatfor large K and N

len 1
SISwsTsi~ > (20)
k=2
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Substituting(20) and(17) into (15) thenprovidesthe following
large N and K approximatiorfor SIR:
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While this approximatiorholdsfor arbitrarydistributions of
the received powers {py }, it is usefulto reconcileit with the
existing approximation(11) thatappliesonly for equalpowers.
Specifically notethatif p, = p for all k, thenfor SNR suffi-
ciently high suchthato? /p < 1, the approximation(21) be-
comes
sz ll—a

wherea = K/N. At the sametime, underthe samehigh SNR
assumptionthesquaregootin (11)is dominatedy thefirstterm
sothatit too implies (22) afterrecognisinghatthe —1/2 term
is negligible.

The someavhat heuristicargumentsleadingto (21) are now
presentedanoreformally in thefollowing Theoremwhichis the
mainresultof the paper The proofis givenin the Appendix.

Theorem1: Let Sy givenby (5) be the randomSIR of the
MMSE recever for userl. Thenunderthe randomspreading
sequencenodel(7),

D1

By = (22)

b1
v —5

lim =
N,K—o00

1o 1
D Db et
l N =0 /o +1
with probabilityone.
|

The expression(21) thenarisesby assuminghat for the N
and K of interest,they arelarge enoughthat the corvergence
indicatedin Theoreml hasapproximatelyoccurred.

V. SIMULATION RESULTS

While Theoreml suggestghe expression(21) for SIR, the
accurag of this expressiorwill dependon whetherthe number
of usersK andthespreadingodelengthNV arebothsufficiently
large.

To testthevalidity of thisapproactior finite N andK thatare
likely to be encounteredh practice,this paperpresentsa short
simulationstudyin which theasymptotidimit (21)is compared
with actual SIR’s computedusing equation(5) for randomly
generatedt1 spreadingsequences.

For eachvalue of «, the Monte Carlo simulation results
are obtainedby averagingthe realisedSIR’s over 100 inde-
pendentlygeneratedamplesof the spreadingsequencenatrix



P1,02, ..., 0K |- HESPIEAllNG.Oucieriglr.y = 1z0, andtne
varianceof the backgroundsaussiamoiseis o2 = 0.01.

Figure 1 displaysresultsfor the MMSE recever assuming
equalrecevedpowersfrom all usersp; = 1, sothatthesignal-
to-noiseratio p/o* = 20 dB. Herethe dash-dofine is the new
expression(21), which is clearly an accurateapproximationto
the (Monte Carlo estimateof) the true SIR shovn asthe solid
line. However, for large a, notethatit is not as accurateas
the existing approximation(11), althoughthe discrepang is so
smallthat(21)is still clearlyinformative.

If therecevedpowerdistributionis non-constantasis shavn
for examplein thelower plot of Figure2, then(11)is nolonger
valid, while (21) remainsapplicableandis shovn asa dash-dot
line. Clearly, it is anaccurateapproximatiorin this caseaswell.
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Fig. 1. Upper plot: Monte Carlo average of randomly generated MMSE SR's
for user 1 as solid line, compared to approximate expressions (11) and (21)
shown (respectively) as dashed and dash-dot lines. Lower plot shows re-
ceived power distribution, which in this case is constant
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Fig. 2. Upper plot: Monte Carlo average of randomly generated MMSE SR's
for user 1 as solid line, compared to approximate expressions (11) and (21)
shown (respectively) as dashed and dash-dot lines. Lower plot shows re-
ceived power distribution.

APPENDIX
|. TECHNICAL RESULTS

Theorem 2 (A StrongLaw of LargeNumbers) Supposq X, }
is a sequencef randomvariables,not necessarilyzeromean,
and with arbitrary correlation structure (not necessarilysta-
tionary) that is characterizedy the existenceof a C < oo,
1 < B < oo suchthat

N N

> > E{X:X,} <CNP.

t=1 s=1

Thenfor ary a > 3/2

2% 0 asN — .

t=1
Proof: See [7] for a proof of the Theoremas stated,or
seeTheorem3.7.2[8] for a slightly wealer resultthat is still
adequatdor the purpose®f this paper |
Il1. PROOF OF MAIN THEOREM

Proof: In whatfollows, C' will denoteanunspecifiecbut
guarantee(inite quantitythatmaybedifferentin differentparts
of the proof. Returningto the formulation(13)

By = BLST [T - S(o*D ' + 578)"'ST] S, (B.23)
ag

theninitially focusingon (14), which stateghat

N
[578],,, = % S Vs (B Vs (), (B.24)
k=1

useof theassumptionsn {V,, (k) } yields
E{Vit1(k)Vni1(k)} = 6(m —n)
for § equalto theKroneclerdelta,and
E {Vin41(B) Vi1 (B) Vi1 () Va1 (4) } =

6(k — J) ;m #n
1 3k#j
Kk ;k=j
sothat
N 2
Z Vint1(E)Vig1 (k) — No(m —n)
E=1

E < CN.

Thereforepby Theorem2 andfor somej > 0

1

Noo N1/2+6 =0,

N
Z Vina1 (B)Vay1 (k) — N6(m —n)
k=1

sothatby (B.24)

c

< N1/ w.p.1.

[s75],,.,, = 6m —n),

For anarbitrarysquarematrix A € R™*™, definethenorm|| 4||
to be the spectralnorm ||A|| = sup,cgr» 27 Az/zT2. Then



compinngtre above resultwithl {9, equaliOrni£.s5.0)j arnawitrl
probabilityone
STS =1+ A,

ALl < Cms (B.25)

K
N1/2—-6"
Using anidenticalargumenttogetherwith the formulation(17)
andTheorem?2

SES  =14Ay,  |As < w.p.1.

C
N1/2-6"

Substitutingtheseexpressionsnto (13) and using the Matrix
InversionLemmathenprovides

By = p—? {1- 5755878, —

SITS(E +A)TTAESTS ) + A2 > (B.26)

whereX is givenby (16). Now, with the definition (18) of 7y, it
follows from (19) that
K

2

n

SISxsTs =Y &
=0k +1

andundertheindependencaynit variance andfinite fourthmo-
mentassumptionsn {V},(n)}

E {ni} N2ZZE{V1 n)Vi (m) Vi (n) Vi (m) }

n=1m=1

1 N
= WZE{Vl(nV

Furthermore,

YE{Vi(n)’} =

1
5 827

LS BV mh O] X

Nt
n,m,l,r=1
E{Vk(m)Vi(n)V;(O)V(r)}
sothatwhenk # j

E{nin;} =

1 N N
Efin} = mr 2 L E(WmRO)
n=14=1
= (N&+ NV - 1))
while whenk = j
E{mn;} = N4 [NK* + N(3N —1)]

wherethelastline follows sincetheexpectationsill bezeroun-
lesstherearetwo matchedpairsof indices,andtakingfirstindex

n, asit rangesthrough NV values,it canmatch3 otherindices,
eachof which canrangethrough N possiblevalues.Therefore,

thereare3 N2 timesthe quadruplesummatiorinvolvespairsof
matchedindices,and of these,N occurrencesnvolve all four
indicesbeingmatched Therefore

133 [+ (BN —-1)] ;k=3j
E {nin?} = (B.28)

(N =1] kA

alidanericelor somec < oo

ZZ

k=2 j=2

E{Vni; — H(Vn7 - 1)}

< CK>.
(0% /pr +1)(0?/p; +1) —

Thereforepy Theorem?2, andfor somed > 0

K

Nnpi—1
= p.1
K1+6 Z 02/1% +1 =0, w-p

sothatsince
K K
1 1 Nnp? -1
N(STS=8TS — =Y | =) b ——
<1 lNéﬂm+J 2 e+
thenfor someC' < oo andwith probabilityone

1 K1+6
—+A Azl <C
02/p +1 + 3» | 3|

T T
SISESTS = + 2
Thereforeusing(B.26)

ﬂN D1

1 & 1
1__ - =
2 ( N%ﬂm+m

‘% [As + Ay — STS(S + Al)—lAlstsl]‘ .

Finally, by the definition of the matrix norm (induced2-norm)
andthe Cauchy—Scharzinequality

ISTS(Z + A1) P AESTS | < JALI(S+ALY) HHIZ)ST SSTSy.
However, asjust established

K
> oni

k=2

1STSST S| = <As;,  wpl

sothatassuminghe power distribution is suchthat¥ > 0 and
noticing that matrix inversionis continuouswith respecto the
matrix 2-normthencompleteghe proof. ]
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