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Abstract— Recentanalysisof linear multiuser receivers for DS-CDMA
signals has considered signal-to-interference (SIR) performance in large
systemswith eachuser employing random spreadingsequences.Unfortu-
nately, it is only in the specialcaseof the received powers of all usersbe-
ing equal that a resulting integral equation for SIR hasan explicit solution
with demonstrableapproximation accuracy for finite-sized systems. This
paper presentsan alternative approachto calculating the SIR performance
of MMSE receivers which relies primarily on the law of large numbers,
and providesan estimatefor SIR that is valid for arbitrary distributions of
received interferer powers.

I . INTRODUCTION

The problem consideredhere is that of minimum mean-
square error (MMSE) detection of direct-sequencecode-
division multiple access(DS-CDMA) signals,with a focuson
providing a simple approximationof the interferenceexperi-
encedby a givenuserdueto otherusersandbackgroundnoise.
Thenatureof studypursuedhereis inspiredby recentindepen-
dentworks [1] and[2], andin particularthe latterwhereatten-
tion is targetedon quantifying the signal-to-interferenceratio
(SIR) in such a mannerthat the contributions of the various
effects of processinggain, received powers of interferersand
backgroundnoiseareclearlyexposed.

Thereare two key tools employed in [2], [1]. The first is
to modelthespreadingsequencesof individualusersasrealiza-
tionsof independentandidenticallydistributed(i.i.d.) stochastic
processeshaving zeromeanandunit variance;seealso[3]. The
secondis to recognizethat theSIR, beinga quadraticform of a
randommatrix,dependsexplicitly ontheeigenvaluedistribution
of that randommatrix. Recentresultsfrom the mathematical
statisticsliterature[4] characterizingthis distribution may then
beemployedto provideexpressionsof engineeringrelevance.

Thisapproachleadsto akey result[2, Theorem3.1] thatpro-
videsan approximationfor the SIR underthe assumptionthat
both the numberof usersand the length of the spreadingse-
quencesarelarge,but thattheir ratio is fixed.Unfortunately, this
expressionis only availablein an implicit form which requires
the solutionof a certainintegral equation. As a consequence,
in [2] a closed-formSIR approximationis only available for
thespecialcasewhenthereceivedpowersof theinterferersare
equal.

Furthermore,the methodsusedto derive the resultsin [2]
involve relatively sophisticatedmachinery, including Stieltjes
transformsand distributions which must be understoodin a
measure-theoreticsense.Thesemayprove to bea limiting fac-
tor in thepenetrationof theresultsandtheunderstandingof their
genesis.

By way of contrast,this paperillustrateshow SIR approxi-
mationsfor MMSE receiversmay be derived usingonly very
simpleideas,namelytheMatrix InversionLemmaandtheLaw
of LargeNumbers.Theresultingclosed-formexpressionfor the
asymptoticSIRis obtainedfor arbitrarydistributionsof received
interfererpowers.

I I . SIGNAL-TO-INTERFERENCE PERFORMANCE OF MMSE
RECEIVERS

Of interestis thefollowing chip-sampleddiscrete-timemodel
for asymbol-synchronousDS-CDMA system��� �� � ���
	 ���
����� (1)

where 	 ����� is the symbol transmittedby the � ’ th userwho
possessesspreadingsequence

�
�������
. Thelengthof thesig-

naturesequence

� �
is thus � , which is alsotermedthe‘process-

ing gain’, andhencevia (1) thereceivedvectorsignal
� �����

consistsof the linearsuperpositionof thesignalssentby all �
userstogetherwith theadditivevectornoise

��� ���
. Here,as

in [2], this noisewill bemodeledaswhite andGaussiansothat
�"!$#&%(' )+*
,.-0/ .

Furthermore,the symbols 1 	 �32 will alsobe modeledasran-
dom variables,independentof one another, and suchthat the
meanandvariancesatisfy

E 1 	 � 2 � ' ) E 4 	 ,�65 �$7 �
sothat

7 �
is thereceivedpowerof usernumber� .

For thepurposesof demodulatingthesignalsentby user � �8
, it is thenusefulto think of thereceivedsignalas��� 	 � � � ��9 (2)

wherenow

9:�$���
representsa compositedisturbanceto the

receptionof thesignalfrom user
8
, andconsistsof thereceived

signalsof all otheruserstogetherwith thebackgroundnoise:9<; �� � � , 	 � � � ��� =
Therefore, the varianceof

9
conditional upon the receiver

knowing the signature sequences 1?> , ).@A@A@A) > � 2 isB�C0DFEHG ;
E 4 9I9KJ$LM� 5 � �ON��OJ�� * , -
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In orderto form thedemodulatedestimatê	 � of thetransmitted
symbol 	 � theclassof linearreceiversof theform^	 � �`_ J � ) _ � � �
is of interest.As establishedin [5], thechoice_a� % 7 � � � �OJ� � EHG /cb �37 � � � � 7 � E b �G � �8 � 7 � � J� E b �G � � (3)



providestheoptimalmeansquareerrorsolutionthatminimizes
bothE 1 % 	 �ed _ J � /f, Lg� 2 andh � ; 7 � E 4 % _ J � � /f, LM� 5_ J E G _ (4)

over the classof all linear receivers. The quantity
h �

is the
signal-to-interferenceratio(SIR)for thereceptionof aparticular
user(in this caseusernumber1), andis a usefulfigureof merit
in consideringtheperformanceof DS-CDMA systems[5], [2].

Substituting(4) into (3) implies that the optimalSIR for the
classof linearreceiversish � �$7 � � J� E b �G � � �P7 � � J� %(�ON�� J � * , -6/ b � � � = (5)

It is of interestto studythis expressionin orderto gain insight
into how theoptimalSIRis affectedby suchfactorsasthedistri-
bution of receivedpowers(accordingto thediagonalentriesof
N

), andtheratio i � � jk� of numberof users� to processing
gain(spreadingsequencelength) � .

I I I . PREVIOUS WORK

Previouswork hastackledthequestionof gaininginsightinto
(5). In particulartherecentstudies[2], [1] have recognizedthat
(5) is expressibleas h � �$7 � ��l ��� %nm l /o,p l � * ,
wherethenumbers1 p l 2 aretheeigenvaluesof

�ON�� J
andthe

numbers

m l arethe projectionsof the elementsof

� � onto the
unit lengtheigenvectorsof

�qN�� J
(associatedwith the eigen-

values1 p l 2 in turn). If
C % p l / is thenthenumberof eigenvalues

in a region r l centredon
p l , then[2] arguesthatin somesense

m , l�s C % p l / jMr l andhencein the limit as �ut"v andasthe
regions r l shrink,wyx{z��|~} h � � h ��7 ��� }� C % p /p � * ,K� p = (6)

Obtaining further clarification then pivots on quantifying the
eigenvaluedensity

C % p / . The key contribution in [2], [1] (see
also[5]), is to modelthespreadingsequences1 � l 2 as� l � 8� � Q � l % 8 /c).@A@A@.) � l % � / T (7)

wherethe elements1 � l %y� / 2 areidenticallydistributedrandom
variablesthatareall independentfor different � or

�
, andsuch

thatE 1 � l %{� /o, 2 � 8 for all � and

�
. For technicalreasonsit is

alsoassumedthatE 1 L � l %y� / L � 2 �`��� v .
The resultsof [4] may thenbe appliedto characterize

C % p / ;
specifically,

C
is suchthat thefollowing integral equationholds

for all � ��� ) Re

% � /e� ' :� % � / ��� i � }� ��� % � /8 � � � % � / � � d �M� b � = (8)

Here i � ��jc� , � % � / is thelimiting density(i.e. limiting shape
of thehistogram)of thereceivedpowersmakingupthediagonal
entriesof

N
, and � % � / � � }� C % p /p d � � p ) (9)

whereit is assumedthat theindicateddensitiesexist, otherwise
Stieltjesintegralsinvolving distributionsarerequired.

A key point is that the above eigenvaluecharacterizationis
implicit sincethesameterm � % � / appearson boththe left and
right handsidesof (8). As a consequence,while thework [2] is
ableto providemany insightsinto thenatureof powercontrolon
DS-CDMA systems,it is only ableto characterizethe limiting
SIRfor thecaseof all thereceivedpowersbeingequal(

7 l �$7 )
in which casethe density � % p / becomesa Dirac delta � % p / �� % p d 7 / sothat� }� ��� % � /8 � � � % � / � � � 78 � 7 � % � / = (10)

Noting that(6) and(9) imply � % d *
,�/ � h j 7 , andsubstitut-
ing this and(10) into (8) evaluatedat � � d *
, thenindicates
thatin theequalpowercaseh7 � ��i 78 � h � * , � b �
which is quadraticin

h
with positivesolutionh � 7� * , % 8 d i / d 8� � 8� * ,
� 7 , % 8 d i / , � � 7 * , % 8 � i / � * � =

(11)
Unfortunately, it appearsthatthiscaseof equalreceivedpowers,
by virtueof theDiracdensityit impliesfor � % p / , is theonly sit-
uationin which thecharacterization(8) maybeappliedin order
to provideanexplicit solutionfor thelimiting SIR

h
.

The purposeof this paperis to illustratehow an alternative
strategy for analyzing(5), by meansof avoiding direct charac-
terizationof thespectraldistributionof thematricesinvolved,is
ableto provide an expressionfor

h
which appliesfor arbitrary

receivedpower distributions. As anancillarybenefit,theargu-
mentsusedalsocall uponlesssophisticatedmathematicalideas
thanthepre-existingapproachjust outlined.

IV. A NEW ANALYSIS

Thekey toolwhichweapplyto theanalysisof (5) is thestrong
law of largenumbers.Specifically, if 1.� l 2 is a sequenceof in-
dependentrandomvariablesfor which certainregularity condi-
tionsapply(seeTheorem2 in theAppendix),thestronglaw of
largenumbersassertsthatw{xyz��|�} 8� ��l ��� % � l d E 1A� l 2 / � ' ) w.p.1 (12)

wherethe “with probability one” (w.p.1) epithetindicatesthat
theabovelimit mayonly fail to holdona subset �¡
¢<  (of the
underlyingprobabilityspace1F  )o£ ) P 2 on which the 1�� l 2 are
defined)for which P

%  �¡ / � ' . The intuitive understandingof
this law is that if E 1.� l 2 � � for all � , thenfor “large” � , the
approximation8� ��l ��� � l s 8� ��l ��� E 1�� l 2 � �
is likely to beaccurate.

Thepurposeof this sectionis to show how this principlecan
beusedto provideinsightinto (5). While perhapsthefirst temp-
tationwould beto applythestronglaw of largenumbersto the



�ON�� J
term in (5) in an attemptto approximateit by a diag-

onal matrix, this approachis fraught with difficulty since,by
construction,

�ON�� J
is rank deficientso that no diagonalex-

pressionis likely to beanaccurateapproximation.Indeed,one
view of theexisting work [2], [1] is that it dealswith precisely
this difficulty by wayof eigenvaluedistributions.

In recognitionof thesepitfalls, this papertakesanalternative
approachby usingthematrix inversionlemma[6], which states
thatQ ¤��¦¥ _ N T b ��� ¤ b � d ¤ b � ¥�Q _ b � �$N§¤ b � ¥ T b � N§¤ b �
for arbitrarymatrices

¤ ) ¥ ) _ ) N of compatibledimensionsand
such that indicatedinversesexist. Application of this to (5)
yieldsh � � 7 �* , �OJ�©¨ - d �K% * , N b � ���OJ�� /ªb � �OJ
«
� � = (13)

Denotingby

Q ¤ T­¬U® ¯ the � )o° ’ th elementof an arbitraryma-
trix

¤
, thenundertherandomvariablemodel(7)¨ �qJ�� « ¬U® ¯ � 8� ��l ��� � ¬�± � % � / � ¯M± � % � /c= (14)

Using � l � � ¬e± � % � / � ¯g± � % � / in the strong law of large
numbersresult (12) and, by the independenceassumptions
E 1�� l 2 � � % � d °
/ with

�
beingtheKronecker delta,thefol-

lowing approximation(valid for large � ) follows:�OJ�� s -�=
Thusfor large � h � s 7 �* , ¨ �OJ� � �ed �qJ� �³²��OJ�� � « (15)

where ²�; � xµ´g¶,k·�¸+· � 8* , j 7 ¸ � 8 = (16)

Now, againby (7) and(12),� J� � � � 8� ��l ��� � ,� % � / s 8� ��l ��� E 4 � ,� % � / 5 � 8 = (17)

Denoting ¹ l ; 8� ��¯ ��� � � % °
/ � l % °
/ (18)

it follows that � J� �³²�� J � � � ��l � ,
¹ ,l* , j 7 l � 8 (19)

andtherefore,againby (12)andnow for large � ,8� d 8 �OJ� �³²��qJ�� � s 8� d 8 ��l � , E 4 ¹ ,l 5* , j 7 l � 8 =

Furthermore,by the definition (18) and the independenceand
unit varianceassumptionson 1 � l % °
/ 2 ,

E 4 ¹ ,l 5 � 8� , ��¯ ���
��¬ ��� E 1 � � % °
/ � l % °
/ � � % � / � l % � / 2� 8� , ��¯ ��� E 4 � ,� % °
/ � ,l % °
/ 5 � 8�

sothatfor large � and �� J� �³²�� J � � s 8� ��l � , 8* , j 7 l � 8 = (20)

Substituting(20) and(17) into (15) thenprovidesthefollowing
large � and � approximationfor SIR:h � s 7 �* ,$º 8 d 8� ��l � , 8* , j 7 l � 8¼» = (21)

While this approximationholdsfor arbitrarydistributionsof
the received powers 1 7 l 2 , it is useful to reconcileit with the
existing approximation(11) thatappliesonly for equalpowers.
Specifically, notethat if

7 l �½7 for all � , thenfor SNR suffi-
ciently high suchthat *
, j 7¿¾ 8

, the approximation(21) be-
comes h � s 7 �* , Q 8 d i T (22)

where i � � jc� . At thesametime, underthesamehigh SNR
assumption,thesquareroot in (11)is dominatedby thefirst term
so that it too implies (22) after recognisingthat the d 8 j � term
is negligible.

The somewhat heuristicargumentsleadingto (21) are now
presentedmoreformally in thefollowing Theorem,which is the
mainresultof thepaper. Theproof is givenin theAppendix.

Theorem 1: Let
h �

given by (5) be the randomSIR of the
MMSE receiver for user1. Thenunderthe randomspreading
sequencemodel(7),wyxyz� ® � |~}`ÀÀÀÀÀ h � d 7 �* ,$º 8 d 8� ��l � , 8* , j 7 l � 8¼» ÀÀÀÀÀ � '
with probabilityone. Á

The expression(21) thenarisesby assumingthat for the �
and � of interest,they are large enoughthat the convergence
indicatedin Theorem1 hasapproximatelyoccurred.

V. SIMULATION RESULTS

While Theorem1 suggeststhe expression(21) for SIR, the
accuracy of this expressionwill dependon whetherthenumber
of users� andthespreadingcodelength � arebothsufficiently
large.

To testthevalidity of thisapproachfor finite � and� thatare
likely to be encounteredin practice,this paperpresentsa short
simulationstudyin which theasymptoticlimit (21) is compared
with actualSIR’s computedusing equation(5) for randomly
generatedÂ 8 spreadingsequences.

For each value of i , the Monte Carlo simulation results
are obtainedby averagingthe realisedSIR’s over 100 inde-
pendentlygeneratedsamplesof the spreadingsequencematrix



Q � � ) � , ).=A=A=.) � �UT . Thespreadingcodelength � � 8��gÃ , andthe
varianceof thebackgroundGaussiannoiseis *
, � ' = ' 8 .

Figure 1 displaysresultsfor the MMSE receiver assuming
equalreceivedpowersfrom all users:

7 � � 8
, sothatthesignal-

to-noiseratio
7 j *
, � � ' dB. Herethedash-dotline is thenew

expression(21), which is clearly an accurateapproximationto
the (Monte Carlo estimateof) the true SIR shown asthe solid
line. However, for large i , note that it is not as accurateas
theexisting approximation(11), althoughthediscrepancy is so
smallthat(21) is still clearlyinformative.

If thereceivedpowerdistribution is non-constant,asis shown
for examplein thelowerplot of Figure2, then(11) is no longer
valid, while (21) remainsapplicableandis shown asa dash-dot
line. Clearly, it is anaccurateapproximationin thiscaseaswell.
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Fig. 1. Upper plot: Monte Carlo average of randomly generated MMSE SIR’s
for user 1 as solid line, compared to approximate expressions (11) and (21)
shown (respectively) as dashed and dash-dot lines. Lower plot shows re-
ceived power distribution, which in this case is constant
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Fig. 2. Upper plot: Monte Carlo average of randomly generated MMSE SIR’s
for user 1 as solid line, compared to approximate expressions (11) and (21)
shown (respectively) as dashed and dash-dot lines. Lower plot shows re-
ceived power distribution.

APPENDIX

I . TECHNICAL RESULTS

Theorem 2 (A StrongLaw of LargeNumbers)Suppose1.�ÅÄ 2
is a sequenceof randomvariables,not necessarilyzeromean,
and with arbitrary correlation structure(not necessarilysta-
tionary) that is characterizedby the existenceof a

_Æ� v ,8 � h � v suchthat�� Ä ���
�� Ç ��� E 1�� Ä � Ç.2�È _ ��É =

Thenfor any i � h j �8�ËÊ �� Ä ��� �ÅÄ~Ì�Í Ç Íd t ' as ��t�v =
Proof: See [7] for a proof of the Theoremasstated,or

seeTheorem3.7.2 [8] for a slightly weaker result that is still
adequatefor thepurposesof this paper.

I I . PROOF OF MAIN THEOREM

Proof: In what follows,
_

will denoteanunspecifiedbut
guaranteedfinite quantitythatmaybedifferentin differentparts
of theproof. Returningto theformulation(13)h � � 7 �* , � J� ¨ - d ��% * , N b � �¦� J � / b � � J�« � � ) (B.23)

theninitially focusingon(14),which statesthat¨ � J ��« ¬Î® ¯ � 8� ��l ��� � ¬�± � % � / � ¯g± � % � /c) (B.24)

useof theassumptionson 1 � ¯ % � / 2 yields

E 1 � ¬�± � % � / � ¯g± � % � / 2 � � % � d °
/
for
�

equalto theKroneckerdelta,and

E 1 � ¬e± � % � / � ¯g± � % � / � ¬�± � %{� / � ¯g± � %y� / 2 �ÏÐ Ñ � % � d � / Ò �ÔÓ� °Õ 8 Ò � Ó� �� Ò � � � Ò � � °
sothat

E

ÏÐ Ñ ÀÀÀÀÀ
��l ��� � ¬e± � % � / � ¯g± � % � / d � � % � d °
/ ÀÀÀÀÀ ,×Ö ØÙ È _ � =

Therefore,by Theorem2 andfor some
� � 'w{xyz��|�} 8� �+Ú , ±�Û ÀÀÀÀÀ

��l ��� � ¬�± � % � / � ¯g± � % � / d � � % � d °
/ ÀÀÀÀÀ � ' ) w.p.1

sothatby (B.24)ÀÀÀ ¨ �OJ�� « ¬U® ¯ d � % � d °
/ ÀÀÀ È _� �+Ú , b Û ) w.p.1.

For anarbitrarysquarematrix

¤a��� ¯�Ü¼¯
, definethenorm Ý ¤ Ý

to be the spectralnorm Ý ¤ Ý �ßÞ+àâá�ãMäMåqæ 	 J ¤ 	 j 	 J 	 . Then



combiningthe above resultwith [9, equation(2.3.8)] andwith
probabilityone� J � � - � r � ) Ý.r � Ý È _ �� �oÚ , b Û = (B.25)

Usingan identicalargumenttogetherwith theformulation(17)
andTheorem2� J� � � � 8 � r , ) L r , L È _� �+Ú , b Û ) w.p.1.

Substitutingtheseexpressionsinto (13) and using the Matrix
InversionLemmathenprovidesh � � 7 �* , 4 8 d �OJ� �ç²��OJ�� � d� J� ��%è²é� r � / b � r � ²�� J � � 5 � r , 7 �* , (B.26)

where

²
is givenby (16). Now, with thedefinition(18)of

¹ l , it
follows from (19) that� J� �³²�� J � � � ��l � ,

¹ ,l* , j 7 l � 8
andundertheindependence,unit variance,andfinite fourthmo-
mentassumptionson 1 � l % °
/ 2

E 4 ¹ ,l 5 � 8� , ��¯ ���
��¬ ��� E 1 � � % °
/ � � % � / � l % °
/ � l % � / 2� 8� , ��¯ ��� E 4 � � % °
/ , 5 E 4 � l % °
/ , 5 � 8� (B.27)

Furthermore,

E 4 ¹ ,l ¹ ,ê 5 � 8� � ��¯6® ¬U® ¸ ® ë ��� E 1 � � % °
/ � � % � / � � %­ì / � � % D / 2îí
E 1 � l % � / � l % °
/ � ê %­ì / � ê % D / 2

sothatwhen � Ó� �
E 4 ¹ ,l ¹ ,ê 5 � 8� � ��¯ ���

�� ¸ ��� E 4 � ,� % °
/ � ,� %ïì / 5� 8� � % � � � � % � d 8 /o/
while when � � �

E 4 ¹ ,l ¹ ,ê 5 � 8� � ¨ � � , � � %(ð � d 8 / «
wherethelastline followssincetheexpectationswill bezeroun-
lesstherearetwo matchedpairsof indices,andtakingfirst index° , asit rangesthrough � values,it canmatch3 otherindices,
eachof which canrangethrough � possiblevalues.Therefore,
thereare

ð � , timesthequadruplesummationinvolvespairsof
matchedindices,andof these,� occurrencesinvolve all four
indicesbeingmatched.Therefore

E 4 ¹ ,l ¹ ,ê 5 � ÏññÐ ññÑ 8� S ¨ � , �`%nð � d 8 / « Ò � � �8� S Q � �`% � d 8 / T Ò � Ó� � (B.28)

andhencefor some
_R� v��l � , ��ê � , E 4 % � ¹ ,l d 8 / % � ¹ ,ê d 8 / 5% * , j 7 l � 8 / % * , j 7 ê � 8 / È _ � , =

Therefore,by Theorem2, andfor some
� � '8� � ±�Û ��l � , �

¹ ,l d 8* , j 7 l � 8 � ' ) w.p.1

sothatsince�Yò �OJ� �³²��OJ�� � d 8� ��l � , 8* , j 7 l � 8âó � ��l � , �
¹ ,l d 8* , j 7 l � 8

thenfor some
_½� v andwith probabilityone� J� �³²�� J � � � 8� ��l � , 8* , j 7 l � 8 � r S ) L r S0L È _�� � ±�Û� =

Therefore,using(B.26)ÀÀÀÀÀ h � d 7 �* , ò 8 d 8� ��l � , 8* , j 7 l � 8âó ÀÀÀÀÀ �ÀÀÀ 7 �* , ¨ r Sç� r , d � J� ��%�²�� r � / b � r � ²�� J � � « ÀÀÀ =
Finally, by the definition of the matrix norm (induced

�
-norm)

andtheCauchy–Schwarzinequality,ÀÀ � J� ��%�²�� r � / b � r � ²�� J � � ÀÀ È ÝAr � Ý @ Ý %è²�� r � / b � Ý @ Ý ² Ý � J� �q� J � � =
However, asjust establishedL �OJ� �q�OJ
� � L � ÀÀÀÀÀ ��l � ,

¹ ,l ÀÀÀÀÀ È r S ) w.p.1

so thatassumingthepower distribution is suchthat

² � ' and
noticing thatmatrix inversionis continuouswith respectto the
matrix

�
-normthencompletestheproof.
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