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1 Introduction

Preface

In this report we discuss the design of cross-directional controllers which are guaranteed to be robustly
stabilizing while incorporating a quadratic programme for steady state performance. The report is loosely
based on the technical report of Akkermans (2003) who proposes using the multivariable circle criterion
to guarantee closed-loop stability of cross-directional controllers in the presence of sector-bounded non-
linearities. Heath and Wills (2004) recommend implementing cross-directional controllers in modal form
with a constrained internal model control (IMC) structure; nominal optimal steady state performance
is guaranteed via a non-linear element that incorporates a quadratic programme. Finally Heath et al.
(2003) observe that the quadratic programme suggested by Heath and Wills (2004) can be expressed as
a continuous sector bounded nonlinearity together with two linear transformations.

An extended abstract has been submitted to the conference Control Systems 2004, organised by PAPTAC,
the Pulp and Paper Technical Association of Canada.

Extended Abstract

Cross-directional control has received considerable attention in the academic community—see for example
(Featherstone et al., 2000) and references therein, as well as more recently (Duncan, 2002; Dochain et
al., 2003) and associated contributions. There are two main schools of cross-directional control design:
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firstly unconstrained control (perhaps with limited anti-windup) based on robust control methodologies,
and secondly constrained control achieved via MPC (model predictive control). In both cases it is
advantageous to decompose the profile into modes (Duncan et al., 1996), with control action reduced or
zero at high modes. Briefly the first school guarantees robust closed-loop behavior, while if the actuator
response is sufficiently well-known the second school offers considerably improved steady state behavior
(Ma et al., 2002; Wills and Heath, 2002). This in turn may have significant impact on the economic
viability of the machine.

Recently Heath and Wills (2004) proposed incorporating a quadratic programme for optimal steady state
behavior via a constrained IMC (internal model control) structure. The controller is straightforward to
implement in real time, and allows robust control designs to be directly translated to the constrained
control case. Furthermore Heath et al. (2003) showed that such quadratic programmes can be modelled
as continuous sector bounded non-linearities together with two linear transformations. This opens the
possibility of using the multivariable circle criterion (Khalil, 2002) to guarantee robust stability. In this
paper we show how all these elements can be combined to design a cross-directional controller with
optimal steady state performance and guaranteed robust stability.

Many authors (e.g. Stewart et al., 2003) assume that if the actuator response is decomposed into modes,
the plant uncertainty may also be decomposed in the same modes. This is reasonable for paper machines
to the extent that the interaction matrix can be approximated as a circular symmetric matrix. In this
case, the multivariable circle criterion may also be decomposed, and it suffices to ensure the dynamics of
each mode satisfies a single variable circle criterion. This ensures a straightforward design methodology
which we illustrate with a simulation example.

Report structure

The report is structured as follows. In Section 2 we introduce the plant model and the control problem.
We briefly review the IMC (internal model control) structure with quadratic programme proposed by
Heath and Wills (2004) for the cross-directional control problem. In Section 3 we discuss a simple robust
unconstrained design and in Section 4 we discuss how this design can be used (and perhaps further
modified) to give a robust constrained controller. As the plant dynamics are split into modes, the control
is also performed mode by mode. In the Appendix we review a simple constrained SISO (single input
single output) IMC design strategy. In Section 5 we discuss the implications of leakage between modes.
In Section 6 we illustrate the results with a simulation.

2 Plant model and control structure

We will make the standard assumption (e.g. Heath, 1996) that the open loop behaviour of the output
profile y(t) may be well approximated by the model

y(t) = z−kh(z)Bu(t) + d(t) (1)

Here y(t) ∈ R
n represents the measured profile across the web and u(t) ∈ R

m represents the array of
actuators. Typically n > m. We assume the whole profile y(t) is available simultaneously. The dynamics
are represented as a delay of k time samples and a biproper transfer function h(z). Typically h(z) is
stable and low order. However it may be non-minimum phase and the delay k may be fairly large. We
assume without loss of generality that h(1) = 1.
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The (n × m) interaction matrix B describes the steady state response of the actuators on the profile.
Finally d(t) ∈ R

n represents disturbances on the plant.

Let the singular value decomposition (SVD) of B be

B = ΦΣΨT (2)

with Φ and Ψ orthonormal and the non-zero block of Σ diagonal.

We can then write y(t) and u(t) in terms of basis functions which are the columns of Φ and Ψ respectively.
We will assume the controller is designed to act only on r ≤ min (n,m) modes, corresponding to the
first r singular values. It will be useful to define a reduced interaction matrix Br ∈ R

(n,m) which can be
decomposed as

Br = ΦrΣrΨ
T
r (3)

with Φr ∈ R
(n,r) representing the modes we wish to control, Σr ∈ R

(r,r) and Ψr ∈ R
(m,r). Thus the

diagonal entries of Σr are the first r diagonal entries of Σ, and the columns of Φr and Ψr are respectively
the first r columns of Φ and Ψ.

Thus we will assume the plant is given by

y(t) = G(z)u(t) + d(t) (4)

with
G(z) = z−kh(z)ΦrΣrΨ

T
r + ∆̃(z) (5)

The term ∆̃(z) takes into account unknown dynamics, neglected dynamics (for example we may choose
to include partial delays in ∆̃(z)) and the neglected higher order modes of B.

Design choice 1. The choice of nominal model z−kh(z)ΦrΣrΨ
T
r together with (implicitly)

the number of modes constitute the first design choice. Furthermore we have chosen SVD,
so Σr is diagonal.

We will put
∆(z) = ΦT

r ∆̃(z)Ψr (6)

Heath and Wills (2004) proposed the following control structure (see Fig 5):

δ̂(t) = ΦT
r y(t) − z−kh(z)Σrµ(t)

δ̂q(t) = Qf (z)δ̂(t) − Qb(z)Σrµ(t)

µ(t) = arg min
µ

∣

∣

∣

∣

∣

∣
Σrµ + δ̂q(t)

∣

∣

∣

∣

∣

∣

2

2
such that Ψrµ ∈ U

u(t) = Ψrµ(t) (7)

Both Qf (z) and Qb(z) are chosen as diagonal transfer function matrices. This is the natural generalization
of the single-input single-output control scheme depicted in Fig 3 (see Appendix), but with the saturation
replaced by an optimizing anti-windup non-linear element, and implemented in modal form.

The actuator signal u(t) is constrained to lie in some space u(t) ∈ U. This will include both saturation
constraints and bending constraints, as is usual for cross-directional controllers. Thus, for example, we
may require

|ui(t)| ≤ Um

|ui−1(t) − 2ui(t) + ui+1(t)| ≤ Ub (8)

for some Um and Ub, and for each actuator position i.
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3 Unconstrained design

As with the single-input single-output case (see Appendix), we begin our design by considering the
unconstrained dynamics. When no constraints are active we have

Qδ(z) = [I − Qb(z)]
−1

Qf (z) (9)

Thus we will begin by designing a diagonal transfer function matrix Qδ(z) and only later choose Qf (z)
and Qb(z).

Design choice 2. Choose Qδ(z). Specifically we will choose Qδ(z) to be diagonal, and tune
each loop according to standard IMC design laws. For simple plants we have two design
parameters per loop: (i) speed of closed-loop response and (ii) incorporation of integral
action.

When constraints are not active, the controller appears as

δ̂(t) = ΦT
r y(t) − z−kh(z)Σrµ(t)

µ(t) = −Σ−1
r Qδ(z)δ̂(t)

u(t) = Ψrµ(t) (10)

See Fig 6. If we substitute for y(t) this gives in closed-loop

δ̂(t) = ∆(z)µ(t) + ΦT
r d(t) (11)

and hence

u(t) = −Ψr [Σr + Qδ(z)∆(z)]
−1

Qδ(z)ΦT
r d(t)

y(t) =
{

I −
[

z−kh(z)ΦrΣr + ∆̃(z)ΨT
r

]

[Σr + Qδ(z)∆(z)]
−1

Qδ(z)ΦT
r

}

d(t)

ΦT
r y(t) =

{

I −
[

z−kh(z)Σr + ∆(z)
]

[Σr + Qδ(z)∆(z)]
−1

Qδ(z)
}

ΦT
r d(t) (12)

In particular, putting ∆̃(z) = 0 gives the nominal sensitivity S(z) and complementary sensitivity T (z) as

S(z) = I − z−kh(z)ΦrQδ(z)ΦT
r

T (z) = z−kh(z)ΦrQδ(z)ΦT
r (13)

Such expressions are quite standard for multivariable IMC (Morari and Zafirou, 1989); however the
modular approach allows considerable simplification (Featherstone et al., 2000). For example, we find

ΦT
r S(z)Φr = I − z−kh(z)Qδ(z) (14)

so design is straightforward provided we choose Qδ(z) to be diagonal.

With a fixed disturbance dss the steady state output becomes:

yss =
{

I −
[

ΦrΣr + ∆̃(1)ΨT
r

]

[Σr + Qδ(1)∆(1)]
−1

Qδ(1)Φ
T
r

}

dss

ΦT
r yss =

{

I − [Σr + ∆(1)] [Σr + Qδ(1)∆(1)]
−1

Qδ(1)
}

ΦT
r dss (15)
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We see immediately the standard result that if Qδ(1) is set to

Qδ(1) = I (16)

then
ΦT

r yss = 0 (17)

Note that this corresponds to integral action, and Stewart et al. (2003) recommend replacing such action
with high gain proportional action. Wills and Heath (2002) discuss steady state behaviour in more detail.

For the analysis of stability robustness, it suffices to consider the feedback loop equations

δ̂(t) = ∆(z)µ(t) + ΦT
r d(t)

µ(t) = −Σ−1
r Qδ(z)δ̂(t) (18)

See Fig 7. Thus a standard robustness requirement might be that we choose Qδ such that

∣

∣

∣

∣−Σ−1
r Qδ(.)∆(.)

∣

∣

∣

∣

∞

< 1 (19)

Such robust control design is discussed by Featherstone et al. (2000) and Stewart et al. (2003). We only
differ in that we recommend constraints are not taken into account at this stage, but rather are taken
explicitly into account when designing Qf (z) and Qb(z) (see below).

A standard assumption is that ∆(z) is diagonal. When this is the case each loop is decoupled and the
design problem is reduced to a series of single-input single-output loops. That is to say, we choose each
diagonal element [Qδ(z)]i such that

∣

∣

∣

∣

∣

∣
− [Σr]

−1
i [Qδ(.)]i [∆(.)]i

∣

∣

∣

∣

∣

∣

∞

< 1 (20)

One possibility (c.f. the Appendix) is to put

[Qδ(z)]i = ki

1 − bi

1 − biz−1
h̃(z) (21)

where h̃(z) is a fixed stable transfer function satisfying h̃(1) = 1. Usually h̃(z) would be chosen to
approximate the inverse of h(z). The design parameters for each mode are then ki and bi, each taking
values between 0 and 1. Choosing bi to be small corresponds to a fast closed loop response. Choosing
ki = 1 corresponds to the inclusion of integral action.

4 Constrained design

Design choice 3. Choose Qf (z) and Qb(z). We require Qf (z) and Qb(z) to be diago-
nal transfer function matrices, with Qf (z) as fast as possible, given certain steady state
requirements, and given that the multivariable circle criterion is satisfied.

When constraints are active we have the following steady state behaviour (Heath and Wills, 2004):

yss = ΦrΣrΨ
T
r uss + ∆̃(1)uss + dss (22)
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and

δ̂ss = ΦT
r yss − Σrµss

µss = arg min
µ

∣

∣

∣

∣

∣

∣
[I − Qb(1)] Σrµ + Qf (1)δ̂ss

∣

∣

∣

∣

∣

∣

2

2
such that Ψrµ ∈ U

uss = Ψrµss (23)

The constrained optimization may be written

µss = arg min
µ

∣

∣

∣

∣

∣

∣
Qf (1)Qδ(1)Σrµ + Qf (1)δ̂ss

∣

∣

∣

∣

∣

∣

2

2
such that Ψrµ ∈ U (24)

Thus the value of Qf (1) determines how much each mode is weighted in the cost function. For this
discussion we will assume the requirement

Qf (1) = Qδ(1) (25)

In particular, when Qδ(1) = I (corresponding to integral action on all modes), then each mode is weighted
equally. But we also require Qb(z) to be strictly proper—i.e. Qb(∞) = 0. This in turn corresponds to

Qf (∞) = Qδ(∞) (26)

There are many ways of satisfying (25) and (26) simultaneously. We will choose

Qf (z) = ΛQδ(z) + (I − Λ)Qδ(∞)(I − Mz−1) (27)

with Λ a diagonal weighting matrix with terms between 0 and 1, and M a diagonal matrix satisfying

M = I − Q−1
δ (∞)Qδ(1) (28)

If we wish to satisfy (9) then we must choose

Qb(z) = I − Qf (z)Q−1
δ (z) (29)

It remains to choose the diagonal elements of Λ. As with the SISO case, we would like to choose the
elements as close as possible to zero (thus ensuring a fast dynamic response with constraints active),
whilst guaranteeing robust stability. Such a choice is discussed by Zheng et al. (1994); note that choosing
the element to be zero does not necessarily correspond to the optimal, even in the absence of uncer-
tainty (Heath and Wills, 2004). The guarantee may be provided by applying the discrete multivariable
circle criterion (Haddad and Bernstein, 1994). Specifically, we may observe the implemented quadratic
programme takes the form

µ(t) = arg min
µ

1

2
µT ΣT

r Σrµ + µT ΣT
r δ̂q(t) such that Ψrµ ∈ U (30)

A function f(·) is said to lie in the sector [0, I] if (Khalil, 2002)

f(x)T f(x) − fT (x)x ≤ 0 for all x (31)

Following the analysis of Heath et al. (2003), we may express µ(t) as

µ(t) = −Σ−1
r f

(

δ̂q(t)
)

(32)
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with f(·) a continuous static nonlinearity that lies in the sector [0, I] provided µ(t) = 0 is feasible. We
find for typical saturation and bending constraints (8) that u(t) = 0 is feasible, in turn corresponding to
µ(t) = 0 feasible.

The remaining dynamic elements reduce to

δ̂q(t) = Qf (z)ΦT
r d(t) + [Qf (z)∆(z) − Qb(z)Σr] µ(t) (33)

See Fig 8. Hence, from the discrete multivariable circle criterion (Haddad and Bernstein, 1994) we require
P (z) to be strongly positive real with

P (z) = I + Qf (z)∆(z)Σ−1
r − Qb(z) (34)

As with the single-input single-output case, if Λ = I the unconstrained robustness condition (19) implies
this is automatically satisfied. For other values of Λ, if ∆(z) is diagonal then P (z) itself is diagonal, and
it suffices to check that each element of P (z) is itself strongly positive real. That is to say each diagonal
element Pi,i(z) satisfies

1. Pi,i(z) is stable.

2. Real[Pi,i(e
−jω)] > 0 for 0 ≤ ω ≤ π.

3. Pi,i(∞) > 0.

5 The case where ∆(z) is non-diagonal

The transformed uncertainty ∆(z) will be diagonal when the following assumptions hold:

1. The plant dynamics G(z) are truly separable between spatial and dynamic modes. I.e. we may
write

G(z) = Bh(z) (35)

for some (not necessarily known) interaction matrix B and SISO transfer function h(z).

2. The matrix ΦT
r BΨT

r is diagonal.

The second condition is equivalent to saying the set of basis functions corresponding to the singular value
decomposition of Br is a subset of those corresponding to the singular value decomposition of B. It
is satisfied for circulant matrices where the basis functions correspond to Fourier terms (Stewart et al.,
2003).

But for most cross-directional problems edge effects violate the second assumption (Wills and Heath,
2002; Mijanovic et al., 2002). Thus ∆(z) is only approximately diagonal. Characterisation of ∆(z) in
such circumstances is beyond the scope of this discussion.

If the non-diagonal elements of ∆(z) are sufficiently small, it would be possible to synthesise diagonal
Qf (z) and Qδ(z) such that P (z) is guaranteed strongly positive real via an appeal to diagonal dominance
(see for example Maciejowski, 1989).
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More generally we observe that it is sufficient to choose Qf (z) and Qb(z) such that
∣

∣

∣

∣Qf∆Σ−1
r − Qb

∣

∣

∣

∣

∞

< 1
since if a transfer function matrix G is strictly proper, stable and satisfies ||G||

∞
< 1, then I+G is strongly

positive real. This follows from the inequalities (e.g. Golub and Van Loan, 1996)

max
∣

∣eig
(

G(ejω)
)∣

∣ < σ̄
(

G(ejω)
)

< 1 (36)

Hence for all x ∈ C

Re
[

xHG
(

G(ejω)
)

x
]

> −1 (37)

and so for all x ∈ C

Re
[

xH(I + G
(

G(ejω)
)

+ I + G
(

G(ejω)
)H

)x
]

> 0 (38)

Note that the transfer function matrices Qf (z), Qb(z) and ∆(z) are all assumed stable. Both Qb(z) and
∆(z) are assumed strictly proper. It follows immediately that Qf∆Σ−1

r − Qb is both stable and strictly
proper.

Furthermore, we observe once again that if we choose Qb(z) = 0 and Qf (z) = Qδ(z) then unconstrained
robust stability ensures constrained robust stability. A similar observation is made by Turner et al. (2004)
in the context of anti-windup with saturation functions for continuous plants.

6 Simulation example

A simulation was performed with uncertainty both in the width of actuator response and in the delay.
The plant was assumed to have 101 actuators and 501 measurement positions. The nominal dynamics
were given by

h(z) =
1 − e0.2

1 − e0.2z−1
(39)

with a delay of 10. The uncertainty in the delay was assumed to be ±1 sample, while the nominal and
allowed range of actuator response (for one actuator) is shown in Fig 9. The actuators were subject to
the constraints (8) with Um = 1 and Ub = 0.1.

Fig 10 shows that the maximum and minimum possible gain at each mode, taking into account both
spatial and dynamic uncertainty. Spillage values (corresponding to non-diagonal terms in ∆(z) are also
shown, although no account of these are taken in the following design. Above mode 48 there is uncertainty
in the sign of the gain, so a maximum of 48 modes was chosen. The range of possible dynamic responses
for mode 10 is shown in Fig 12. Values of bi and ki for each mode were chosen according to the following
criterion:

1. For each mode we should have bi ≤ 0.9.

2. For each consecutive mode we should have bi+1 ≥ bi.

3. k should be chosen as near to 1 as possible.

4. The maximum possible achieved sensitivity should be less than 2.

5. The robustness criterion (47) should be satisfied.
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Values for b and k are shown in Fig ??. Note that k is less than 1 (no integral action) only for the last
few modes.

This determines Qδ(z), with

[Qδ]i(z) =

(

1 − bi

1 − a

) (

z − a

z − bi

)

(40)

It was found that with these values the circle criterion was satisfied for all modes with Λ = 0. For
example, the values of [P (z)]10 are shown in Fig 13 for 0 ≤ ω ≤ π; it is clear that [P (z)]10 is strongly
positive real for any permissible value of ∆(z). Hence from (28) and (29) this leads to

Qf (z) = Qδ(∞)(I − Mz−1)

[M ]i =

(

a − bi

1 − bi

)

[Qf (z)]
i

= k

(

1 − bi

1 − a

)

− k

(

a − bi

1 − a

)

z−1

[Qb(z)]i =

(

a − bi

1 − bi

) (

z − 1

z − a

)

biz
−1 (41)

Final output profile and actuator positions are shown for a simulation with worst case mismatch in Figs 14
and 15. These results were obtained with a stochastic disturbance. Fig 16 shows the profile evolving in
response to an output disturbance which appears as a step in the machine direction (but stochastic in
the cross direction). Fig 17 shows the corresponding mode evolutions.

7 Conclusions

The incorporation of a quadratic programme into a cross-directional controller has been proposed by
many authors, and originally by Boyle (1977). It can be shown to have significant advantage provided
the actuator response is sufficiently well-known (Ma et al., 2002; Wills and Heath, 2002), in particular with
respect to steady state performance. In this paper we have shown that if the control scheme suggested
by Heath and Wills (2004) is used, then the multivariable circle criterion can be used to guarantee robust
stability whilst reaping the benefits of a quadratic programme. We have also suggested a simple design
methodology for the case where the uncertainty may be assumed to be diagonal (in the appropriate modal
space).

References

Akkermans, J. A. G. (2003). Robust cross-directional control of paper making machines. Technical report
submitted as part of Master’s degree at Eindhoven University of Technology, written while studying
at CIDAC, University of Newcastle.

Boyle, T. J. (1977). Control of cross-directional variations in web forming machines. Can. J. of Chem.
Eng. 55, 457–461.

Campo, P. J. and M. Morari (1990). Robust control of processes subject to saturation nonlinearities.
Computers and Chemical Engineering 14, 343–358.

9



Dochain, D., G. Dumont, D. M. Gorinevsky and T. Ogunnaike (2003). Editorial. Special issue on control
of industrial spatially distributed processes. IEEE Trans. Control Systems Technology, 11, 609–611.

Duncan, S. R. (2002). Editorial. Special section: Cross directional control. IEE Proc. Control Theory
Appl., 149, 412–413.
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Appendix: review of constrained SISO IMC design

We design our controller mode by mode, so it will be useful to review some salient features of constrained
SISO (single-input single-output) IMC (internal model control). The following treatment is quite standard
(Kosut, 1983; Morari and Zafirou, 1989; Campo and Morari, 1990; Zheng et al., 1994), save for some of
the notation which becomes useful when generalized to the multivariable case.

Unconstrained design

Consider the set-up shown in Fig 1. We assume the plant is given by

y(t) = g(z)u(t) + d(t)

g(z) = z−kσh(z) + ∆(z) (42)

with h(z) stable. If g(1) 6= 0 we may assume without loss of generality h(1) = 1 and h(∞) 6= 0. The
controller is given by

u(t) = −qδ(z)σ−1δ̂(t)

δ̂(t) = y(t) − z−kσh(z)u(t) (43)

We will put

qδ(z) =

(

1 − b

1 − bz−1

)

h̃(z)k (44)

where h̃(z) is stable and an approximate inverse of h(z). In particular we will assume h̃(1) = 1. This
gives us two design parameters b and k. The nominal sensitivity is

s(z) = 1 − z−k

(

1 − b

1 − bz−1

)

h(z)h̃(z)k (45)

Note that s(z) is only zero at steady state (z = 1) if k = 1, corresponding to integral action.

Stability of the loop can be assessed by observing that

δ̂(t) = d(t) + ∆(z)u(t) (46)

and hence that stability is guaranteed provided negative feedback stabilizes the forward transfer function
∆(z)qδ(z)σ−1 (see Fig 2). Thus we might impose the condition

∣

∣

∣

∣∆(.)qδ(.)σ
−1

∣

∣

∣

∣

∞

< 1 (47)

Constrained design

Now consider the constrained system shown in Fig 3. The control input u(t) is given by

u(t) =







umax for σumax < −δ̂q(t)

−σ−1δ̂q(t) for σumin ≤ −δ̂q(t) ≤ σumax

umin for −δ̂q(t) < σumin

11



The unconstrained behavior is the same as previously provided

[1 − qb(z)]−1qf (z) = qδ(z) (48)

We will satisfy this by choosing

qf (z) = λqδ(z) + (1 − λ)qδ(∞)

qb(z) = 1 − qf (z)q−1
δ (z) (49)

for some λ. Choosing λ nearer to zero generally (but not always) gives a faster response. The closed-loop
equations can be expressed as

δ̂(t) = d(t) + ∆(z)u(t)

u(t) = −σ−1sat[δ̂q(t)]

δ̂q(t) = qf (z)δ̂(t) − σqb(z)u(t) (50)

Eliminating δ̂(t) gives

u(t) = −σ−1sat[δ̂q(t)]

δ̂q(t) = qf (z)d(t) + [qf (z)∆(z) − σqb(z)] u(t) (51)

See Fig 4. Hence by the circle criterion (Haddad and Bernstein, 1994), stability is guaranteed provided
p(z) is strongly positive real with

p(z) = 1 + σ−1qf (z)∆(z) − qb(z) (52)

That is to say we require p(z) to be stable and

Real[p(e−jω)] > 0 for 0 ≤ ω ≤ π

p(∞) > 0 (53)

Note that we may write

p(z) = 1 + σ−1qf (z)∆(z) − qb(z)

= σ−1qf (z)∆(z) + qf (z)q−1
δ (z)

= λ + (1 − λ)qδ(∞)q−1
δ (z) + σ−1λqδ(z)∆(z) + σ−1(1 − λ)qδ(∞)∆(z) (54)

It follows that

p(∞) = 1 + σ−1qδ(∞)∆(∞)

= 1 (55)

provided ∆(∞) = 0. Furthermore, if we choose λ = 1, we find

Real[p(e−jω)] = Real[1 + σ−1qδ(e
−jω)∆(e−jω)]

> 0 (56)

provided (47) holds.

Hence we have a natural tuning procedure:

12



1. Find simple model and corresponding h̃(z). Evaluate the uncertainty ∆(z).

2. Tune the unconstrained response by choice of b and k. We want good (nominal) disturbance
response and to satisfy (47). Let k = 1 if possible.

3. Choose λ to give satisfactory constrained response and to satisfy p(z) strongly positive real.

13



Figures

-

+

-

δ̂(t)

u(t) y(t)
Plantqδ(z)σ−1

z−kσh(z)

Figure 1: Unconstrained SISO IMC.

+

+
d(t)

−qδ(z)σ−1

∆(z)

δ̂(t)

u(t)

Figure 2: Loop with uncertainty for SISO unconstrained control.
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δ̂(t)

−δ̂q(t) u(t) y(t)
σ−1sat Plantqf(z)

σqb(z) z−kσh(z)

Figure 3: SISO IMC with feedback around the saturation.

+

+
qf(z)d(t)

qf(z)∆(z) − σqb(z)

−σ−1sat[δ̂q(t)]

u(t)

δ̂q(t)

Figure 4: Loop with uncertainty for constrained control.
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Figure 5: IMC in modal form with feedback around the non-linear element.
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u(t) y(t)
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ΦT
r

Qδ(z) Ψr

Σr

z−kh(z)

Figure 6: IMC in modal form without constraints.
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Figure 7: Loop with uncertainty for unconstrained control.
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Qf(z)ΦT

r d(t)

Qf(z)∆(z) − Qb(z)Σr

arg minµ

∣

∣

∣

∣

∣

∣
Σrµ + δ̂q(t)

∣

∣

∣

∣

∣

∣

2

2

µ(t)

δ̂q(t)

Figure 8: Loop with uncertainty for constrained control.
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Figure 9: Range of actuator response we consider. This shows three possible bump test responses on the
profile for one actuator.
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Figure 10: Corresponding range in the modes. This shows the singular values of the nominal response,
together with the maximum and minimum possible values in this space. Spillage values can also be seen.

Figure 11: Possible range of values for [G(z)]10. The nominal response is first order with delay, while
∆(z) accounts for both spatial and dynamic uncertainty.
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Figure 12: Values of bi and ki at each mode.

Figure 13: Possible values of [P (z)]10 with [Λ]10 = 0. We see the robustness criterion for this mode is
satisfied.
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Figure 14: Final profile value (with and without control) in both profile and mode space.
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Figure 15: Corresponding actuator position, and second moment of actuators.
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Figure 16: Profile response to step disturbance change with model mismatch (illustration of stability).

Figure 17: Corresponding mode evolution (illustration of stability).
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