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1. INTRODUCTION

This paper is inspired by recent results (Guo
and Ljung, 1995) that quantify the parameter
space performance of adaptive algorithms, by
work suggesting the utility of analysis of adaptive
algorithms in the frequency domain (Egardt et
al., 1992; C. R. Johnson Jr., 1995), by work sug-
gesting such analysis be simplified by considering
high model orders (Gunnarsson and Ljung, 1989),
and by recent work suggesting novel model struc-
tures for adaptive algorithms (Williamson and
Zimmermann, 1996).

These model structures are generalisations of the
popular FIR structure, but are more flexible
in that the poles in the model structure need
not all be fixed at the origin. As pointed out
in (Williamson and Zimmermann, 1996), exploit-
ing this flexibility can accrue many advantages in
terms of estimation accuracy, while still retaining
the desirable convergence properties enjoyed by
adaptive FIR schemes.

Following the suggestions in (Egardt et al., 1992;
C. R. Johnson Jr., 1995), this paper provides a
frequency domain analysis of the performance of
these ‘generalized FIR’ methods in order to make
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explicit how the tradeoff between noise sensitivity
and tracking ability is influenced by input and
noise spectral densities, choice of step size, and
(what is a main focus of this paper) the choice
of fixed pole position. There are close relations
between this work and those of Gunnarsson and
Ljung (Gunnarsson and Ljung, 1989) who studied
adaptive FIR algorithms in the frequency domain.
Specifically (Gunnarsson and Ljung, 1989) pro-
vide the main idea of this paper which is to sim-
plify error expressions by considering large model
order.

A key tool used in this paper is to re–parameterize
the fixed denominator model structure into an or-
thonormal form studied in (Ninness and Gustafs-
son, 1997) in order to facilitate the theoretical
analysis. This strategy illustrates that an or-
thonormal parameterisation is an intrinsic part
of estimation using any fixed denominator model
structures. This arises since for recursive least
squares (RLS) and Kalman filtering algorithms,
the tracking error in the frequency domain can
be quantified in terms of the orthonormal form
whether or not the model structure is originally
cast in this form. The orthonormal form makes
explicit how the error depends on the choice of
fixed poles.



2. PROBLEM FORMULATION

This paper considers situations where an observed
input sequence {uk} is related to an observed
output sequence {yk} according to

yk = Gk(q)uk + νk (1)

where {νk} is a zero mean white noise process with
variance E{ν2

k} = σ2
ν < ∞ and

Gk(q) =

∞∑

n=0

gk(n)q−n

is a possibly time varying linear system with
impulse response {gk(n)} ∈ `2. It is assumed
that {uk} is a realisation of a stationary stochas-
tic process with covariance function Ru(τ) =
E {ukuk−τ} and associated spectral density Φu(ω) =∑

∞

τ=−∞
Ru(τ)e−jωτ and that {uk} is weakly un-

correlated with {νk} in the sense that |E {ukνk−τ} | →
0 as τ → ∞. It is also assumed that Φu(ω) > 0
and that Φu(ω) has a finite dimensional spectral
factorisation.

At issue is the estimation of the (assumed un-
known) time varying dynamics Gk(q) by means
of the observations {uk} and {yk}. There are
many approaches to this problem, but a common
theme (Goodwin and Sin, 1984) is to express
the dependence (1) in a linear regression form
yk = φT

k θk + νk where the ‘regression vector’ φk

depends on measurements of {ut} and {yt} up
until t = k and θk ∈ Rp is a vector of p parameters
in a model structure G(q, θk) that attempts to
describe the true dynamics Gk(q). An estimate

of Gk(q) is then obtained as G(q, θ̂k) where the

estimate θ̂k is obtained recursively via

θ̂k+1 = θ̂k + Lk(yk − φT
k θ̂k), µ ∈ (0, 1) (2)

where Lk is a gain vector that may be computed
in various ways. A common choice for this gain
vector is Lk = µφk, µ ∈ (0, 1) in which case
(2) is known as the ‘gradient’ or ‘least mean
square’ (LMS) algorithm. Another common choice
is Lk = Pkφk where Pk satisfies

Pk =
1

λ

{
Pk−1 −

Pk−1φkφT
k Pk−1

λ + φT
k Pk−1φk

}

with λ = 1 − µ, µ ∈ (0, 1) and Pk is initialised
with some positive definite P0 and with the en-
suing algorithm being known as ‘Recursive Least
Squares’ (RLS). Finally, if the time variation of
the parameters θk are modeled via a random walk
as θk+1 = θk + ρ wk where wk is a stationary zero
mean vector white noise process with E{wkwT

k } =
Q, then the update law

Lk =
µPk−1φk

σ2 + µφT
k Pk−1φk

(3)

where Pk satisfies the Riccati equation

Pk = Pk−1 − µ
Pk−1φkφT

k Pk−1

σ2 + µφT
k Pk−1φk

+ µΣ (4)

with Σ > 0 and symmetric is known as the
Kalman Filter.

When employing any of these adaptive schemes,
a central question is the accuracy of the estimate
G(q, θ̂k) as a description of Gk(q). The most
common way of assessing this is to examine the
accuracy of θ̂k itself (Goodwin and Sin, 1984).
This may be achieved by defining θk as the true
parameter vector that allows the model structure
to exactly describe the underlying time varying
dynamics as G(q, θk) = Gk(q) and by defining the

estimation error θ̃k as θ̃k , θk − θ̂k.

Substituting this definition into the general up-
date equation (2) gives that this error satisfies the
following difference equation

θ̃k+1 =
(
I − LkφT

k

)
θ̃k + ρ ωk − Lkνk. (5)

The quality of an adaptive estimation scheme
can then be quantified by using (5) to calcu-

late the covariance E{θ̃kθ̃T
k } as a measure of

estimation accuracy. Unfortunately, as pointed
out in (Gunnarsson and Ljung, 1989; Guo and
Ljung, 1995), the exact expression for this co-
variance will be very complicated except in very
special circumstances. The main result of (Guo
and Ljung, 1995) which will be central to the
analysis of this paper is that under the stated
assumptions, E{θ̃kθ̃T

k } may be approximated by
Πk given by the deterministic difference equation

Πk+1 = (I − µSkR)Πk(I − µSkR)T +

µ2σ2
νSkRSk + ρ2Q (6)

where R , E
{
φkφT

k

}
and Sk is defined as

LMS:

Sk = I, (7)

RLS:

Sk = (1 + µ)Sk−1 − µSk−1RSk−1; S0 = P0, (8)

Kalman Filter:

Sk = Sk−1 − µSk−1RSk−1 +
µ

σ2
Σ; S0 =

1

σ2
P0,(9)

In (Guo and Ljung, 1995) the quality of this ap-

proximation is quantified as
∥∥∥E
{
θ̃k θ̃T

k

}
− Πk

∥∥∥ ≤

κ(µ) where κ(µ) is a bounded function that tends
to zero as µ tends to zero.

However, as argued in (Gunnarsson and Ljung,
1989; Egardt et al., 1992), in many cases the
interest is not in the accuracy in parameter space,



but the accuracy in how close the estimated model
G(q, θ̂k) is to the true system Gk(q) in terms

of the error G̃k(ejω) , Gk(ejω) − G(ejω , θ̂k) in
the estimated frequency response. In this paper,
model structures G(q, θk) are considered for which
the estimated frequency response depends linearly
on the estimated parameters as G(ejω , θ̂k) =

ΓT
p (ejω)θ̂k where

Γp(q) , [B0(q),B1(q), · · · ,Bp−1(q)]
T

(10)

is a vector of p rational transfer functions Bn(q).
For example, Bn(q) = q−n corresponds to an FIR
model structure.

Using (6) and (10), an approximate frequency
domain quantification of adaptive performance
may then be taken as

E

{
|G̃k(ejω)|2

}
= Γ?

p(e
jω)E

{
θ̃kθ̃T

k

}
Γp(e

jω)

≈ Γ?
p(e

jω)ΠkΓp(e
jω) (11)

where ·? denotes ‘conjugate transpose’. Unfortu-
nately, again this expression will in general be
of a very complicated nature. The main contri-
bution of this paper will be to follow the lead
of (Gunnarsson and Ljung, 1989) and derive sim-
ple approximations for (11) that are increasingly
accurate for increasing model order p. These sim-
plified expressions make clear how factors such as
measurement noise variance, input spectral den-
sity, and (what is the novel part of this work)

choice of fixed pole location affect E{|G̃k(ejω)|2}.

3. MODEL STRUCTURES

The model structures examined in this paper
have recently been proposed and examined in an
adaptive filtering context by Williamson and co–
workers in a series of papers (see (Williamson and
Zimmermann, 1996) for references) where they
have been termed ‘fixed pole adaptive filters’.
They are formulated as

G(q, θ′k) =

[
p−1∏

n=0

(q − ξn)

]−1 p−1∑

n=0

θ′k(n)qn (12)

where the poles {ξn} are fixed according to prior
information about the likely pole positions of the
true time varying system Gk(q). A special case of
this structure arises when all the poles {ξn} are
chosen at the origin in which case (12) is an FIR
model structure.

However, empirical evidence (Williamson and
Zimmermann, 1996) supports the fact that in
an adaptive filtering context, a significant im-
provement in estimation accuracy is possible by
avoiding poles all fixed at the origin, and instead
distributing them in the unit disk so as to be as
close as possible to the true poles of Gk(q).

In spite of the pleasant properties enjoyed by the
model structure (12), its generality (as compared
to an FIR structure) makes frequency domain
analysis of adaptive algorithms much more diffi-
cult. To be more specific, with an FIR structure,
the frequency response of the estimated model can
be considered to be a linear combination of the
‘basis functions’ {1, e−jω, · · · , e−j(p−1)ω} used in
classical Fourier analysis.

Furthermore, since these FIR ‘basis functions’ en-
joy the group structure e−jωne−jωm = e−jω(m+n),
then for large k the parameter covariance ma-
trix approximation Πk is Toeplitz, and by draw-
ing on the wealth of literature on such matri-
ces (Grenander and Szegö, 1958) it is possible to
determine the function for which (11) is a (par-
tial) Cèsaro mean Fourier reconstruction. These
are the main tools used in (Gunnarsson and
Ljung, 1989).

Unfortunately, for the more general model struc-
ture (12), all these properties are lost, mak-
ing the instructive frequency domain expressions
presented in (Gunnarsson and Ljung, 1989) less
straightforward to derive. The contribution of this
paper is to overcome these difficulties by replac-
ing the model structure (12) with the following
formulation

G(q, θk) =

p−1∑

n=0

θk(n)Bn(q) (13)

where

Bn(q) =

(√
1 − |ξn|2

q − ξn

)
n−1∏

k=0

(
1 − ξkq

q − ξk

)
(14)

This model structure (13) is easily cast in linear
regression form with

φk , ΓT
p (q)uk = [B0(q)uk,B1(q)uk, · · · ,Bp−1(q)uk],

θk , [θk(0), θk(1), · · · , θk(p − 1)]T .

A key point is that since the poles of the model
structure (13) and (12) are identical, then they
are equivalent in the sense that for some non-
singular J ∈ Rp×p, the parameter vectors θk in
(13) and θ′k = Jθk in (12) describe exactly the
same transfer function. As well, with initialisation
P0 = J−1P ′

0J
−T consistent with this linear re–

parameterisation, the RLS update equations are
invariant to the re–parameterisation in the sense
that θ̂′k = Jθ̂k so that frequency response esti-

mates are identical: G(ejω , θ̂′k) = G(ejω , θ̂k). This
same property also applies to the Kalman Filter-
ing update law (3),(4) provided the compatibility
Σ = J−1Σ′J−1 is also maintained.



4. STEADY STATE ANALYSIS

The steady state behavior of the frequency re-
sponse estimation error is defined to be the quan-
tity E{|G̃k(ejω)|2} for large k, and in order for
it to be investigated, it is necessary to examine
the behavior of the solution Πk of (6) for large k;
that is limk→∞ Πk , Π where Π may be evaluated
by determining the steady state solutions S ,

limk→∞ Sk of (7)–(9) and then substituting them
into (6) before examining its steady own state
solution with terms of order µ2Π discarded (Guo
and Ljung, 1995).

LMS: Here S = I so that Π is the solution of
the Lyapunov equation

ΠR + RΠ = µσ2
νR +

ρ2

µ
Q. (15)

RLS: Here S = R−1 so that Π is given by

Π =
µσ2

ν

2
R−1 +

ρ2

2µ
Q. (16)

Kalman Filter: This case is more difficult. S is
the solution of σ2SRS = Σ so that Π is given
by the solution of

SRΠ + ΠRS =
µσ2

ν

σ2
Σ +

ρ2

µ
Q. (17)

For the special case of Σ = Q this system has
solution

Π =
σ2

2

(
µ

σ2
ν

σ2
+

ρ2

µ

)
S. (18)

Using these characterisations of Π together with
(11) it is possible to quantify the steady state
estimation error in the frequency domain as

E

{
|G̃(ejω)|2

}
, lim

k→∞

E

{
|G̃k(ejω)|2

}

≈ Γ?
p(e

jω)ΠΓp(e
jω). (19)

Although this provides a quantifiable performance
measure, the resulting expression is so compli-
cated that it is difficult to extract useful design
insight from it. However, if the model order is
assumed large, then the expression (19) can be
significantly simplified, and doing so illustrates
the crucial dependence of the error (19) on the
term γp(ω) defined as

γp(ω) ,

p−1∑

k=0

|Bk(ejω)|2, (20)

the nature of which is illustrated in figure 1.
In the results that follow, the quantity δ(ω) ,

E
{
|Gk+1(e

jω) − Gk(ejω)|2
}

is used to quantify
the time variation of Gk(q) in the frequency do-
main.

Theorem 4.1. For the LMS algorithm and the
model structure (13), then

lim
p→∞

1

γp(ω)
E

{
|G̃(ejω)|2

}
=

1

2

[
µσ2

ν +
ρ2δ(ω)

µΦu(ω)

]

Proof: Using Parseval’s Theorem together with
the notation (A.1) in (15) gives that in the limit
as k → ∞

Γ?
p(e

jω)ΠMp(Φu)Γp(e
jω)

γp(ω)
+

Γ?
p(e

jω)Mp(Φu)ΠΓp(e
jω)

γp(ω)
=

µσ2
νΓ?

p(e
jω)Mp(Φu)Γp(e

jω)

γp(ω)
+

ρ2δp(ω)

µγp(ω)
.

Taking the limit of both sides as p → ∞ while
using Theorem A.1 then gives the result.

The interpretation of this theorem is that for
large model order p, and after the algorithm has
converged (large k)

E

{
|G̃k(ejω)|2

}
≈

γp(ω)

2

[
µσ2

ν +
ρ2δ(ω)

µΦu(ω)

]
(21)

For the case of all the poles {ξn} in the model
structure G(q, θ) chosen at the origin, then γp(ω) =
p and the above expression specialises to that de-
rived in (Gunnarsson and Ljung, 1989). However,
as illustrated in figure 1, the factor γp(ω) in the
expression (21) shows how pole choices other than
FIR influence the frequency domain estimation
error.

Of course, a fundamental question is the reliability
of using the approximation (21) for practically
useful (and hence finite) model orders, given that
it is obtained from a result that is asymptotic
in p. The most suitable way to deal with this
issue would be to quantify the convergence rate
in theorem 4.1. This appears to be extremely dif-
ficult. Instead, the approach used in (Gunnarsson
and Ljung, 1989) is taken wherein the validity
of (21) for finite p is examined via a simulation
study. This is done in §5, where it is shown in
figure 2 that for a tenth order model, (21) is
quite an accurate approximation; see (Ninness and
Gómez, 1996) for an illustration of the veracity
of the approximation for only a 4th order model
structure.

Theorem 4.2. For the RLS algorithm and the
model structure (12) or (13), then

lim
p→∞

1

γp(ω)
E

{
|G̃(ejω)|2

}
=

1

2

[
µσ2

ν

Φu(ω)
+

ρ2

µ
δ(ω)

]

Proof: Using Parseval’s Theorem together with
the notation (A.1) in (16) gives that



1

γp(ω)
E

{
|G̃(ejω)|2

}
=

Γ?
p(e

jω)ΠΓp(e
jω)

γp(ω)
=

µσ2
ν

2γp(ω)
Γ?

p(e
jω)M−1

p (Φu)Γp(e
jω) +

ρ2δp(ω)

2µγp(ω)

Taking the limit of both sides as p → ∞ while
using Theorem A.1 then gives the result.

Following the example of the previous theorem,
the interpretation of this theorem is that for
large model order p, and after the algorithm has
converged (large k)

E

{
|G̃k(ejω)|2

}
≈

γp(ω)

2

[
µσ2

ν

Φu(ω)
+

ρ2

µ
δ(ω)

]
. (22)
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Fig. 1. Plot of γp(ω) =
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k=0 |Bk(ejω)|2 for p = 4
and for various choices of pole location.

To complete the analysis, the following theorem
quantifies Kalman Filter performance However,
there are particular difficulties in solving for the
steady state parameter covariance Π, and this
leads to the treatment of only a specialised case
in which Q = Σ.

Theorem 4.3. For the Kalman Filtering algo-
rithm, the model structure (12) or (13) and under
the assumption that Q = Σ, then

lim
p→∞

1

γp(ω)
E

{
|G̃(ejω)|2

}
=

1

2

(
µ

σ2
ν

σ2
+

ρ2

µ

)√
σ2δ(ω)

Φu(ω)

Proof: Uses the same ideas as in the previous
proofs, but is more arithmetically complicated.
See (Ninness and Gómez, 1996) for details.

In sympathy with previous results, the interpreta-
tion of this theorem is that for large model order
p and after the algorithm has converged (large k)
then

E

{
|G̃k(ejω)|2

}
≈

γp(ω)

2

(
µ

σ2
ν

σ2
+

ρ2

µ

)√
σ2δ(ω)

Φu(ω)
(23)

The ubiquity of the term γp(ω) in all these error
quantifications shows that the orthonormal pa-

rameterisation (13),(14) is more than just an es-
sential tool for the analysis of general fixed denom-
inator model structures. Instead, the orthonormal
‘basis functions’ {Bn(q)} appear as an intrinsic
part of adaptive estimation with any fixed denom-
inator model structure G(q, θ).

5. SIMULATION EXAMPLE

In this section, the utility of the previous theoreti-
cal analysis will be demonstrated via a simulation
study in which it is supposed that there is an
underlying system

G(q) =
0.0355q + 0.0247

(q − 0.9048)(q − 0.3679)
(24)

from which input–output data is collected when
the input {uk} is stationary and Gaussian with
spectral density Φu(ω) = 10/(1.25 − cosω), and
the observed output {yk} is subject to white
Gaussian corruption {νk} of variance σ2

ν = 0.01.
Based on this observed data, an attempt is made
to estimate G(q) using the model structure (13)
with poles {ξn} chosen to correspond to contin-
uous time guesses of 0.2 and 0.25 radians per
second. Note that these poles, being far from
either of the true poles at 0.1 and 1 rad/s, are
particularly bad guesses. They have been chosen
to dispel any suspicion in the sequel that the high
accuracy of the approximations (21),(22) and (23)
illustrated in figure 2 derives from unreasonable
prior knowledge or idealised conditions.

All three algorithms, the LMS with µ = 0.001,
RLS with λ = 0.999 and P0 = I , and the Kalman
Filter with µ = 0.001, Σ = 0.1, P0 = I and
σ2 = 0.01 were employed with a tenth order model
structure (p = 10).

These estimation experiments were performed
five hundred times with different realisations
for the input and measurement noise. This al-
lowed the true frequency domain estimation error
E{|G̃k(ejω)|2} to be estimated by calculating its
sample value as an average over the 500 realisa-
tions. This is plotted as the solid line in figure 2.
The dash–dot lines are the approximations (21),
(22) and (23) derived from theorems 4.1–4.3.

In all cases, the close agreement between the solid
and dashed plots shows the approximations (21),
(22) and (23) to be highly accurate. This is in
spite of the approximations being derived from
asymptotic in p results, but being applied in this
simulation to only a p = 10’th order model.

6. CONCLUSIONS

This paper has provided an analysis of the fre-
quency domain error for various adaptive esti-
mation schemes. This results in the extension
of certain results already known for FIR model



structures wherein all poles are fixed at the ori-
gin, to more general model structures where the
poles may be placed arbitrarily, so long as they
are stable. It was shown that the entire effect of
the choice of fixed pole position on the frequency
domain steady–state error depends on one term
(called γp(ω)). For FIR models, this term is simply
p, the model order, but for fixed pole choices not
at the origin (FIR), the term becomes frequency
dependent in a manner that is influenced solely
by the choice of poles.

Incidentally, it would be reasonable to suspect
that all the results presented in this paper
could be derived by a much simpler strategy of
employing known results for FIR model struc-
tures (Gunnarsson and Ljung, 1989) with the in-
put spectrum considered to be Φu(ω)/|Dp(e

jω)|2

where Dp(q) =
∏p−1

k=0(q − ξk) is the fixed denomi-
nator being employed.

Unfortunately, this simple approach fails since it
leads to the conclusion that the error is invariant
to the choice of pole location, and this can easily
be seen to be incorrect via simple simulation. The
failure of the method can be traced to a delicacy in
which one is implicitly trying to recover a function
(Φu(ω)/|Dp(e

jω)|2) from it’s partial Fourier series
of length p, and since the function changes as p
grows, the Fourier series does not converge with
increasing p.

This paper sidesteps this difficulty by a strategy of
re–parameterization with respect to a particular
orthonormal basis under which the (generalized)
Fourier series one is considering concerns a func-
tion Φu(ω) which is invariant to p. The difficulty
with this latter method, is that it requires cer-
tain new results (Theorem A.1) which generalise
Toeplitz matrix and Cèsaro mean convergence
results from the conventional trigonometric basis
setting.
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Appendix A. TECHNICAL RESULTS

Define, for a function f(ω) > 0 the matrix

Mp(f) ,
1

2π

π∫

−π

Γp(σ)Γ?
p(σ)f(σ) dσ. (A.1)

Theorem A.1. Suppose f(ω) is continuous. Then
provided

∑
∞

k=0(1 − |ξk |) = ∞

lim
p→∞

Γ?
p(ω)Mp(f)Γp(ω)

γp(ω)
= f(ω).

If in addition f has a finite dimensional spectral
factorisation then

lim
p→∞

Γp(µ)?M−1
p (f)Γp(ω)

γp(ω)
= f−1(ω).

Additionally, if Qp ∈ Rp×p is symmetric, positive
definite and ‖Qp‖2 < ∞ for all p, then

lim
p→∞

1

γp(ω)
Γ?

p(ω)Mp(f)QpMp(f)Γp(ω) =

f2(ω) lim
p→∞

1

γp(ω)
Γ?

p(ω)QpΓp(ω).

lim
p→∞

Γ?
p(ω)Mp(f)QpΓp(ω)

γp(ω)
= f(ω) lim

p→∞

Γ?
p(ω)QpΓp(ω)

γp(ω)
.

Proof: See (Ninness and Gómez, 1996).
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