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Abstract— Extrinsic Information Transfer (or EXIT) charts
have provided a useful tool for analysing the convergence of
iterative decoders. In this work, we abstract the EXIT chart as
a feedback interconnection of two one-dimensional dynamical
systems. For such feedback interconnections, we characterise
the local stability properties of fixed points and demonstrate
the existence of period two orbits and discuss their stability
properties. Finally, we give a graphical procedure for finding
the region of attraction for asymptotically stable fixed points or
period two orbits.

I. I NTRODUCTION

The advent of turbo codes [3] and the rediscovery of
low-density parity-check codes [4], [6] have made iterative
decoding a subject of intense study over the past decade.
Codes for iterative decoding are typically made up of two
simple constituent codes, which are then decoded by individual
decoders, with messages passed between the decoders at each
iteration.

One of the more successful analysis and design tools for
iteratively decoded codes has been the Extrinsic Information
Transfer (EXIT) chart [11], which is a graphical tool enabling
the mutual information exchanged between constituent de-
coders to be tracked.

An EXIT chart plots the average input-output mutual infor-
mation from one constituent decoder against the other, where
the EXIT functions corresponding to each decoder characterise
the manner in which each decoder convertsa priori and
(possibly) channel log-likelihood ratio (LLR) messages into
a posterioriLLR values.

In the case of asymptotically long block lengths, it has been
observed that, for ideal decoding, it is necessary to have a
“convergence tunnel” [2] such that the decoding trajectorycan
move from the origin to(1, 1). To date, the use of EXIT
charts has focused heavily on the existence or absence of
this convergence tunnel to describe the expected behaviour
of the corresponding iterative decoder without the need for
computationally intensive bit-error rate (BER) simulations.

In this paper we employ tools of dynamical systems theory
to take a first step towards a more systematic understanding
of EXIT charts. Our starting point is the observation that
the exchange of messages between constituent decoders can
be seen as the feedback interconnection of two discrete-time
dynamical systems. To this end, we consider the following

two-dimensional system

xk+1 = f(yk)

yk+1 = g(xk)
(1)

where f, g : [0, 1] → [0, 1], and bothf(·) and g(·) are
monotonically increasing on[0, 1]. We assume we are given
initial conditionsx0, y0 ∈ [0, 1].

An EXIT chart is then the plot ofx = f(y) andy = g(x).
Assuming the existence of an (at least local) inverse for the
functionf , fixed points of (1) consist of those points(x∗, y∗)
satisfying

g(x∗) = f−1(x∗), y∗ = g(x∗). (2)

If we plot the two functions in the plane, we see that these
points are the intersections of the graphs ofy = g(x) and
y = f−1(x). If both f and g are continuous on the square,
Brouwer’s fixed point theorem guarantees the existence of at
least one fixed point. An obvious question is: What can we say
about the stability of these fixed points? Two further questions
are: Can (1) give rise to periodic or chaotic solutions? What
can we say about domains of attraction for fixed points and/or
periodic orbits?

Fixed points for the turbo decoder have previously been
studied in [1] and [8]. Whereas these references essentially
examine the order2n dynamical system described by the
decoder (for block lengthn), we examine the second-order
approximation given by the EXIT chart. While it was shown
in [9] that the EXIT chart may not entirely capture the iterative
decoding process, it has proven to be a useful approximationin
practice. The analysis in the current work provides a precursor
to a more thorough analysis to understand precisely how the
EXIT chart approximates the decoding process.

In Section II we demonstrate a local condition on the
graph that is sufficient to determine instability or asymptotic
stability of fixed points of (1). As such, our assumptions on the
nature of the functions (i.e., continuously differentiable with a
continuously differentiable inverse) need only be satisfied near
to the fixed points. In Section III we demonstrate the existence
of period two orbits for (1) and give sufficient local conditions,
again related to the graph, for instability or asymptotic stability
of the period two orbits. Finally, in Section IV we take a
more global view and demonstrate regions of attraction for
asymptotically stable fixed points and period two orbits. Being
a global result, we require the functions to be well-behaved



over the square. In particular, we require them to be continuous
and monotonically increasing.

II. L OCAL STABILITY PROPERTIES OF FIXED POINTS

We first make precise our stability notions.
Definition 1: A fixed point x∗ is said to bestable for

xk+1 = f(xk) if for every ε > 0 there existsδ > 0 such
that for all initial states satisfying|x0 − x∗| < δ, solutions
satisfy |xk − x∗| < ε for all k ∈ Z≥0. A fixed point that is
not stable is said to beunstable.

Definition 2: A fixed point is said to beasymptotically
stableif, in addition to being stable,|xk−x∗| → 0 ask → ∞.

For nonlinear systems, such as those described by equa-
tion (1), we may clearly have more than one equilibrium point.
Consequently, we can modify the above definitions to hold
locally around a fixed point. In essence, this means that there
exists a neighbourhood around the fixed point wherein we
have asymptotic stability. We refer to this aslocal asymptotic
stability.

A well-known result from stability theory is that the local
stability of a fixed point for a nonlinear system can be
determined from the linearisation of the system at the fixed
point, so long as the fixed point ishyperbolic. A hyperbolic
point is one such that the Jacobian of the system equations
evaluated at that point has eigenvalues strictly within or strictly
outside the unit circle. In the former case, the point is locally
asymptotically stable, while in the latter case the point is
unstable. (See, for example, [10, Theorem 1.3.7].)

We will make use of the following terminology:
Definition 3: We call (x∗, y∗) a stable crossingif for some

ε > 0, the graphs intersect withg(x) > f−1(x) for x ∈
(x∗−ε, x∗) (i.e., when approaching from the left) andg(x) <
f−1(x) for x ∈ (x∗, x∗+ε) (i.e., when moving away from the
fixed point to the right). We call(x∗, y∗) anunstable crossing
if the graphs intersect withg(x) < f−1(x) for x ∈ (x∗−ε, x∗)
andg(x) > f−1(x) for x ∈ (x∗, x∗ + ε)

Theorem 1:Supposef(·), f−1(·), and g(·) are continu-
ously differentiable in a neighbourhood of the fixed point
(x∗, y∗). If, (x∗, y∗) is a stable crossing, then the fixed point
is locally asymptotically stable. If, on the other hand,(x∗, y∗)
is an unstable crossing, then the fixed point is unstable.

Fact 1: Consider the pointsx∗, y∗ ∈ [0, 1] satisfying
x∗ = f(y∗) where f(·) is continuously differentiable and
monotonically increasing. Then

d

dy
f(y)

∣

∣

∣

∣

y=y∗
=

1
d
dx

f−1(x)

∣

∣

∣

∣

∣

x=x∗

.

Proof: The linearisation of (1) at a fixed point is given by
[

xk+1 − x∗

yk+1 − y∗

]

=

[

0 f ′(y∗)
g′(x∗) 0

] [

xk − x∗

yk − y∗

]

(3)

It is easy to see that the eigenvalues for the above system
matrix are atλ = ±

√

f ′(y∗)g′(x∗).
We first consider the case whereg(·) is initially above

f−1(·). In order for the curves to cross, we see that, in

some neighbourhoodB of the fixed point, it is necessary that
d
dx

f−1(x) > d
dx

g(x) for all x ∈ B. Using Fact 1, we see that

g′(x∗)f ′(y∗) < 1. (4)

As a consequence, the eigenvalues of the linearisation are
inside the unit circle, and hence the fixed point is locally
asymptotically stable.

Consider now the case whereg(·) is initially below f−1(·).
Then, in some neighbourhoodB of the fixed point, it is
necessary thatd

dx
f−1(x) < d

dx
g(x) for all x ∈ B. Using

Fact 1 again, we see that the eigenvalues of the linearisation
must lie outside the unit circle. Therefore the fixed point is
unstable. �

Remark 1:Note that, if the curves intersect, but do not
cross, then the eigenvalues of the linearisation in (3) are at
±1. This follows because, at such a point the derivatives

d

dx
f−1(x∗) =

d

dx
g(x∗) ⇒ f ′(x∗)g′(x∗) = 1.

As a consequence, this approach does not allow us to deter-
mine the stability of the fixed point. In Section IV we use a
different approach to show that such points are saddle points.

�

Remark 2:We observe that, so long asf and g are con-
tinuous in a neighourhood of(1, 1), then the rightmost fixed
point must be either a stable crossing or at(1, 1). This follows
from the fact thatf and g must be defined over the entirety
of [0, 1]. �

Example 1: In [2], Ashikhmin et al.presented an EXIT
chart for a (2, 4)-regular LDPC code over a binary erasure
channel with erasure probabilityq. They derive the EXIT
function for the check nodes asIEc = (IAc)

3 and the EXIT
function for the variable nodes isIEv = 1 − q (1 − IAv). In
the above notation, this yields the system

xk+1 = y3
k =: f(yk)

yk+1 = 1 − q(1 − xk) =: g(xk).

The linearization about a fixed point(x∗, y∗) is easily calcu-
lated as

[

x̂k+1

ŷk+1

]

=

[

0 3(y∗)2

q 0

] [

x̂k

ŷk

]

(5)

The eigenvalues of the system matrix are then atλ =
±

√

3(y∗)2q.
We examine the same valuesq = 0.3, 0.5 as in [2]. When

q = 0.3, there is only one crossing and it is at(1, 1). We see
in this case that the eigenvalues of the above Jacobian are at
λ = ±

√

9/10 and the fixed point is locally asymptotically
stable as expected. (In fact, it is globally asymptotically
stable, but that does not follow from Theorem 1. Rather, see
Lemma 2.) On the other hand, whenq = 0.5, we see that
there are two crossings; one at(1, 1) and the other at about
(0.2361, 0.6180). For the crossing at(1, 1), we see that the
eigenvalues are atλ = ±

√

3/2. Therefore, the fixed point
at (1, 1) is unstable. For the crossing at(0.2361, 0.6180), the
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Fig. 1. Dashed line:y = g(x), Solid line: y = f−1(x), ∗: Solution from
(0.7, 0.8)

eigenvalues are atλ = ±
√

0.5729. Consequently, the fixed
point is locally asymptotically stable, as expected.

Finally, in [2], they note that the threshold for convergence
to (1, 1) is atq = 1/3; i.e., the decoder converges forq < 1/3.
If we examine the location of the eigenvalues given above, we
see thatλ = 1 precisely whenq = 1/3, and |λ| < 1 when
q < 1/3, thus guaranteeing asymptotic stability of the fixed
point. �

Remark 3:We note that the trajectories shown in Figure 1
and 4 do not lie between the EXIT functions as in common
EXIT chart plots in the literature. This comes from our having
taken initial conditions other than the origin and examining
how the system evolves. To see that trajectories outside the
EXIT function “envelope” are indeed correct for these initial
conditions, consider specifically Figure 1. From the initial
condition (0.7, 0.8), draw a vertical line until intersecting
y = g(x) (the dashed line). This is they-value of the next
point. Consequently, the next point must lie on a horizontal
line drawn from this intersection. Now draw a horizontal line
from (0.7, 0.8) until intersecting the curvex = f(y) (the solid
line). This gives thex-value of the next point. So we can draw
a vertical line through this point. The next iterate lies on the
intersection of the secondary lines. In Figure 2, we show this
procedure for the first four iterations.

Our choice of initial conditions was made to illustrate the
wider range of behaviour possible for systems such as those
described by (1). This would correspond to the decoders
having access to non-zeroa priori knowledge (see, e.g., [12,
Section III.A]). In particular, we assume we can initialise
both decoders with independent values, and we then map the
iterates; i.e., the points(x0, y0), (x1, y1), and so on.

By way of comparison, the common plots with points lying
on the EXIT functions come about by iterating only one
state at a time while holding the other state constant. That
is, the common staircase plot can be obtained by plotting
(x0, y0), (x1, y0), (x1, y1), (x2, y1), and so on. Note that, if
we start from an initial condition on one of the EXIT curves,
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Fig. 2. First four iterations for Example 1. Dashed line:y = g(x), Solid
line: y = f−1(x), ∗: Solution from(0.7, 0.8)
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Fig. 3. Dashed line:y = g(x), Solid line: y = f−1(x), ∗: Solution from
(0, 0)

the plots of the iterates are the same regardless of which
approach is taken. For example, consider Figure 3 where we
take as initial condition(0, y1), where y1 = g(0) = 0.5.
We see that the iterates evolve as(0, y1), (f(y1), g(0)) =
(f(y1), y1), (f(y1), g(f(y1))). In other words, each coordinate
only changes every other iteration. �

Rather than consider the two-dimensional system described
in (1), which is a natural and direct abstraction of the EXIT
chart, we may consider the evolution of the composition
mappingsf ◦ g(·) andg ◦ f(·).

Consider the iterative mapping

zk+1 = f ◦ g(zk). (6)

with initial condition z0 ∈ [0, 1]. We observe that this comes
directly from equation (1) where we have simply takenzk as
a subsequence of the sequence ofxk. We note that a fixed
point of f ◦ g, sayz∗, must correspond to anx∗ andy∗ that
are fixed points of (1). In particular,z∗ = x∗ andy∗ = g(z∗).
Taking the Taylor series expansion off ◦ g(·) around a fixed



point z∗ gives us the following difference equation

zk+1 ≈ f ◦ g(z∗) + f ′(g(z∗))g′(x∗)(zk − z∗)

= z∗ + f ′(y∗)g′(x∗)(zk − z∗).

Therefore, near the fixed point(x∗, y∗), we have

zk+1 − x∗ ≈ f ′(y∗)g′(x∗)(zk − x∗) (7)

This then gives an alternate proof of Theorem 1 since a
similar equation can be derived forg ◦ f . By using the same
relationship as in equation (4), we see that sequences will tend
to contract to the fixed pointx∗. If, on the other hand, we have
that

d

dx
f−1(x∗) <

d

dx
g(x∗) ⇒ f ′(y∗)g′(x∗) > 1

then sequences will move away from the fixed pointx∗. Note
that, if this approach is taken, one must carefully account
for the initial conditions. We will return to this point in the
following section.

III. PERIOD TWO ORBITS

Suppose we have two isolated fixed points,(x∗
1, y

∗
1) and

(x∗
2, y

∗
2). Take as an initial condition(x∗

1, y
∗
2). The solution

from this point is then
(

x∗
1

y∗
2

)

,

(

f(y∗
2) = x∗

2

g(x∗
1) = y∗

1

)

,

(

f(y∗
1) = x∗

1

g(x∗
2) = y∗

2

)

, · · · (8)

which is a period two orbit.
We see, then, that an easy way to locate the period two

orbits of (1) is to draw a horizontal and vertical line through
each fixed point in the plane. Each intersection is then one
point of a period two orbit.

Lemma 1: If n is the total number of fixed points in the
square, then there aren(n−1)

2 period two orbits.
Proof: Suppose we haven fixed points which correspond to
φ(n) period two orbits. We observe that adding another fixed
point will result in n new period two orbits. We also observe
that, in the case of a single fixed point, there are no period
two orbits. Consequently, we have the difference equation

φ(n + 1) = φ(n) + n, φ(1) = 0

the solution of which isn(n−1)
2 . �

When discussing period two orbits, it is useful to consider
the mapping obtained over two time steps:

xk+1 = f ◦ g(xk−1)

yk+1 = g ◦ f(yk−1)
(9)

Definition 4: A period two orbit is stable (asymptotically
stable, unstable, hyperbolic) if each periodic point on theorbit
is stable (asymptotically stable, unstable, hyperbolic) as a fixed
point of the two time step mapping.

The following theorem states that it is only necessary to
examine the stability properties of one point on an orbit (rather
than both) [10, Theorem 1.3.9]:

Theorem 2:Let f : <n → <n be continuously differen-
tiable and letx∗ ∈ <n be a point on an orbit of periodq.

Then x∗ is hyperbolic and stable (hyperbolic and unstable)
as a fixed point off (q) if and only if the period q orbit is
hyperbolic and stable (hyperbolic and unstable).
The above theorem simplifies the proof of:

Theorem 3:Suppose(x∗
1, y

∗
1) and(x∗

2, y
∗
2) are stable cross-

ings. Then the period two orbit consisting of(x∗
1, y

∗
2) and

(x∗
2, y

∗
1) is locally asymptotically stable. Suppose, on the other

hand, that(x∗
1, y

∗
1) and (x∗

2, y
∗
2) are unstable crossings. Then

the period two orbit is unstable.
Proof: Theorem 2 states that we need only examine the
linearisation of the two step mapping at one point of a period
two orbit which, for the orbit above, is

[

f ′(y∗
2)g′(x∗

2) 0
0 f ′(y∗

1)g′(x∗
1)

]

. (10)

As the linearisation is diagonal, the eigenvalues are simply the
diagonal entries. As in the proof of Theorem 1, we observe
that if (x∗

1, y
∗
1) and(x∗

2, y
∗
2) are stable crossings, then both of

f ′(y∗
2)g′(x∗

2) andf ′(y∗
1)g′(x∗

1) are less than unity. Therefore,
both eigenvalues of the linearisation are within the unit circle
and the period two orbit is locally asymptotically stable. On
the other hand, if both points are unstable crossings, then both
f ′(y∗

2)g′(x∗
2) andf ′(y∗

1)g′(x∗
1) will be greater than unity and,

consequently, the period two orbit will be unstable. �

Remark 4:We note that, as in the case of saddle points, the
above approach gives us no information about the stability of
period two orbits when one of the intersecting lines corre-
sponds to a saddle point since the period two orbit will not be
hyperbolic. �

Example 2:We consider the sixth order polynomial given
by

g(x) =
31

16
x − 247

32
x2 +

675

32
x3 − 365

16
x4 +

15

2
x5 + x6

and takef(y) = g(y). We see that there are crossings at
(0, 0),

(

1
4 , 1

4

)

,
(

1
2 , 1

2

)

,
(

3
4 , 3

4

)

, and(1, 1). Looking at Figure 4,
we quickly see that(0, 0),

(

1
2 , 1

2

)

, and (1, 1) are unstable
crossings, yielding unstable fixed points from Theorem 1.
Stable crossings are at

(

1
4 , 1

4

)

and
(

3
4 , 3

4

)

.
Since there are five fixed points, Lemma 1 gives that there

are ten period two orbits. From Theorem 3 we see that there
is one asymptotically stable period two orbit consisting of
{(

1
4 , 3

4

)

,
(

3
4 , 1

4

)}

. We also have three unstable period two
orbits at
{(

0,
1

2

)

,

(

1

2
, 0

)}

,

{(

1

2
, 1

)

,

(

1,
1

2

)}

, {(0, 1), (1, 0)} .

In Figure 4, we plot the curvesy = g(x) and x = f(y).
The stars show iterations of the system converging to the
asymptotically stable period two orbit. Figure 5 shows the
evolution ofxk andyk as a function of timek. �

Looking at (9), we see that we have effectively decoupled
the equations from each other. However, we note that, were
we to propagate these mappings forward, we would need
two initial conditions for each equation. We are given initial
conditionsx0 andy0. These then define our second conditions
asx1 = f(y0) andy1 = g(x0).
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Fig. 4. Solid line:y = g(x), Dashed line:y = f−1(x), ∗: Solution from
(0.05, 0.9)
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We saw in the previous section that we can use the Taylor
series expansion to determine local stability about a fixed point
for the mappingsf ◦ g(·) andg ◦ f(·). Suppose the two fixed
points(x∗

1, y
∗
1) and (x∗

2, y
∗
2) are locally asymptotically stable.

If we consider an initial condition(x0, y0) close to(x∗
1, y

∗
2),

we see that even elements of the sequencexk converge tox∗
1,

while odd elements of the sequence converge tox∗
2. Similarly,

even or odd elements of the sequenceyk will converge toy∗
2

or y∗
1 , respectively. We therefore have a period two orbit with

the orbit defined by the points(x∗
1, y

∗
2) and (x∗

2, y
∗
1).

IV. D OMAINS OF ATTRACTION

In the previous two sections, all of our results were local to
the fixed points or to the period two orbits. In this section, we
take a more global view. Firstly, we can show that if there is
only one fixed point, then it is globally asymptotically stable;
by which we mean that all initial conditions in the square
eventually converge to the fixed point.

Lemma 2:Supposef andg are both continuous. Iff ◦g(·)
has a unique fixed pointx∗, thenx∗ is globally asymptotically

stable for the difference equation

xk+1 = f ◦ g(xk). (11)
Proof: We first note that, if there is only one fixed point, then
it is a stable crossing. This follows since both mappings must
be defined over their entire domain and continuous. In other
words,g must (continuously) connect the left and right sides
of the unit square, whilef−1 must (continuously) connect the
bottom and top sides of the unit square. As a consequence,f−1

must initially be belowg. If there is only a single intersection,
then it is clearly a stable crossing. The exception to this isif the
sole intersection is at the origin, in which casef−1(x) > g(x)
for thosex > x∗.

Suppose that the fixed point is neither at 0 nor 1 and
consider any initial conditionx0 ∈ [0, x∗). Then, sincex∗

is unique, we know thatf ◦ g(x) > x for all x ∈ [0, x∗).
Consequently, we have

xk+1 = f ◦ g(xk) > xk = f ◦ g(xk−1) > xk−1 > · · · > x0.

Sincef ◦ g(·) is continuous, monotone, andf ◦ g(x∗) = x∗,
we see that thexk form a bounded, monotonically increasing
sequence. Therefore the sequence converges tox∗. A similar
argument holds for allx ∈ (x∗, 1], except that any sequence
will be monotonically decreasing as a consequence off ◦
g(x) < x for all x ∈ (x∗, 1]. Therefore, for every initial
condition, the solution to (11) will asymptotically converge
to x∗.

If the fixed point is at 0, we see thatg(x) > f−1(x) for all
x ∈ (0, 1]. Consequently, any initial condition will generate a
sequence converging to 0. Similarly, if the fixed point is at 1,
then g(x) > f−1(x) for all x ∈ [0, 1) and all solutions will
converge to 1. �

Suppose we have two fixed points(x∗
1, y

∗
1) and (x∗

2, y
∗
2)

ordered such thatx∗
1 < x∗

2 and y∗
1 < y∗

2 and such that no
fixed point lies between them. Further suppose that, on the
interval (x∗

1, x
∗
2) we have thatf−1(x) > g(x). Then, on

the interval(x∗
1, x

∗
2), x > f ◦ g(x). Consequently, iterating

xk+1 = f ◦ g(xk) leads to a monotonically decreasing
sequence bounded below byx∗

1. Alternately, iff−1(x) < g(x)
for all x ∈ (x∗

1, x
∗
2), then iteratingxk+1 = f ◦g(xk) generates

a monotonically increasing sequence bounded above byx∗
2.

We note that, iff−1(x) < g(x), this implies thatg−1(y) <
f(y), or that y < g ◦ f(y). Therefore, for an initial point
y0 ∈ (y∗

1 , y∗
2), we see that

y2(k+1) = g ◦ f(y2k) > y2k = g ◦ f(y2(k−1)) > y2(k−1)

> · · · > y0 > y∗
1 .

Consequently, the sequencey2k will approachy∗
2 . In a similar

fashion,f−1(x) > g(x) implies g−1(y) > f(y) or, in other
words,y > g ◦ f(y). In this case, then, the sequencey2k will
approachy∗

1 .
Finally, we observe that the above statements hold for the

case when a fixed point is the leftmost or rightmost fixed point
in the square. This allows us to define a simple partition of
the square which quickly gives the regions of attractions for
the fixed points, as well as the regions of attraction for the



period two orbits. For each unstable or saddle point, draw
both a vertical and a horizontal line through the point. A
locally asymptotically stable fixed point attracts all points in
its (open) partition. Note that a saddle point will be at a corner.
If f−1(x) ≥ g(x) around a saddle point, then it will lie on
the bottom left corner of the partition containing its domain
of attraction. If f−1(x) ≤ g(x) around a saddle point, then
the saddle point will be on the top right corner of the partition
containing its domain of attraction.

Example 3:Looking again at the system in Example 2, we
see that the square is partitioned into four sections. The domain
of attraction for

(

1
4 , 1

4

)

is
{

(x, y) ∈
(

0, 1
2

)

×
(

0, 1
2

)}

while
that for

(

3
4 , 3

4

)

is
{

(x, y) ∈
(

1
2 , 1

)

×
(

1
2 , 1

)}

. We see that the
domain of attraction for the period two orbit

{(

1
4 , 3

4

)

,
(

3
4 , 1

4

)}

is
{

(x, y) ∈
((

1

2
, 1

)

×
(

0,
1

2

))

⋃

((

0,
1

2

)

×
(

1

2
, 1

))}

.

Finally, we observe that the lines through the unstable fixed
points are invariants. �

V. CONCLUSIONS

The EXIT chart has proved to be one of the more successful
design tools available for iterative decoding. Furthermore, it
potentially has important connections to fundamental quanti-
ties in coding theory [7] and has been shown to be useful in
other parts of the physical layer receiver chain [5].

We have presented a first step towards understanding how
EXIT charts capture the key elements of the iterative decoding
process, particularly with non-zeroa priori initial conditions.
We have presented both a local analysis of stability properties
of fixed points and shown the existence of period two orbits.
Note that, away from the fixed points, this analysis does not
require that the EXIT functions be continuous or monotonic.
Future extensions of this work will include removing the
differentiability assumption and perhaps even the continuity
assumption at the fixed points.

We also demonstrated that regions of attraction can be found
over the square when the EXIT functions are monotonic and
continuous. It should be possible to at least get conservative
estimates on regions of attraction for more general classesof
functions.

In the case where we start the iterations with zeroa priori
knowledge, this implies we start at the origin. In this case,the
results of Section IV guarantee that the trajectory converges
to the first fixed point to the right of, or at, the origin (so long
as the origin is not an unstable crossing). However, our results
demonstrate that the ability to bias the decoders or make
use of somea priori knowledge will not always guarantee
convergence to(1, 1).

We note that, with a stable crossing yielding a locally
asymptotically stable fixed point, a small perturbation away
from the fixed point in the direction of(1, 1) will not cause the
decoder to converge. Rather, the trajectory will simply return
to the fixed point. If, on the other hand, the curves merely
intersect but do not cross, a perturbation in the direction of

(1, 1) will, in fact, allow the iterations to continue to the next
fixed point.

Finally, we note that these results have the interesting
implication that it is actually possible toreducethe information
content via iterative decoding. As the trajectory plotted in
Figure 1 shows, it is possible to start close to(1, 1) and yet to
ultimately move quite far away. In fact, since(1, 1) is unstable
and (0.2361, 0.6180) attracts every initial condition except
(1, 1), we can start arbitrarily close to “perfect information”
and yet iterate to a distant point.
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