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Abstract— Extrinsic Information Transfer (or EXIT) charts  two-dimensional system
have provided a useful tool for analysing the convergence of
iterative decoders. In this work, we abstract the EXIT chart as Tht1 = f(yr) 1)
a feedback interconnection of two one-dimensional dynamad Yrt1 = g(xk)
systems. For such feedback interconnections, we characise
the local stability properties of fixed points and demonstrae Where f,g : [0,1] — [0,1], and both f(-) and g(-) are
the existence of period two orbits and discuss their stabily ~monotonically increasing of0, 1]. We assume we are given
properties. Finally, we give a graphical procedure for findng jnijtial conditionszo, yo € [0,1].
the region of attraction for asymptotically stable fixed ponts or An EXIT chart is then the plot of = f(y) andy = g().
period two orbits. Assuming the existence of an (at least local) inverse for the

function f, fixed points of (1) consist of those points*, y*)
|. INTRODUCTION Satisfying

The advent of turbo codes [3] and the rediscovery of g(z*) = f~z"), y"=g(a*). (2)

low-density parity-check codes [4], [6] have made ite@tVi¢ \o biot the two functions in the plane, we see that these
decoding a subject of intense study over the past decad

for i " A icall d ¢ §ints are the intersections of the graphsyof= g(x) and
Codes for iterative decoding are typically made up o tW?('J) — f~1(z). If both f and ¢ are continuous on the square,

simple constituent codes, which are then decoded by inetalid Broywer’s fixed point theorem guarantees the existence of at

decoders, with messages passed between the decoders atgaehne fixed point. An obvious question is: What can we say
iteration. . . about the stability of these fixed points? Two further questi
~ One of the more successful analysis and design tools g% can (1) give rise to periodic or chaotic solutions? What
iteratively decoded codes has been the Extrinsic Infoonaticap e say about domains of attraction for fixed points and/or
Transfer (EXIT) chart [11], which is a graphical tool enagli eriodic orbits?
the mutual information exchanged between constituent de-giyxeqd points for the turbo decoder have previously been
coders to be tracked. studied in [1] and [8]. Whereas these references essentiall
An EXIT chart plots the average input-output mutual inforexamine the ordefn dynamical system described by the
mation from one constituent decoder against the other, avhgfecoder (for block lengt), we examine the second-order
the EXIT functions corresponding to each decoder chariaeterapproximation given by the EXIT chart. While it was shown
the manner in which each decoder conveatriori and in [9] that the EXIT chart may not entirely capture the itérat
(possibly) channel log-likelihood ratio (LLR) message®in decoding process, it has proven to be a useful approximiation
a posterioriLLR values. practice. The analysis in the current work provides a premur
In the case of asymptotically long block lengths, it has be&d a more thorough analysis to understand precisely how the
observed that, for ideal decoding, it is necessary to haveEXIT chart approximates the decoding process.
“convergence tunnel” [2] such that the decoding trajectay In Section Il we demonstrate a local condition on the
move from the origin to(1,1). To date, the use of EXIT graph that is sufficient to determine instability or asyntisto
charts has focused heavily on the existence or absencesgibility of fixed points of (1). As such, our assumptions los t
this convergence tunnel to describe the expected behaviggture of the functions (i.e., continuously differentablith a
of the corresponding iterative decoder without the need feontinuously differentiable inverse) need only be satisfiear
computationally intensive bit-error rate (BER) simulato to the fixed points. In Section Il we demonstrate the existen
In this paper we employ tools of dynamical systems theoof period two orbits for (1) and give sufficient local condits,
to take a first step towards a more systematic understandagsin related to the graph, for instability or asymptotabdity
of EXIT charts. Our starting point is the observation thatf the period two orbits. Finally, in Section IV we take a
the exchange of messages between constituent decodersnsare global view and demonstrate regions of attraction for
be seen as the feedback interconnection of two discrete-tiasymptotically stable fixed points and period two orbitsinBe
dynamical systems. To this end, we consider the followirgy global result, we require the functions to be well-behaved



over the square. In particular, we require them to be contisu some neighbourhooB of the fixed point, it is necessary that

and monotonically increasing. L f=1(z) > L g(x) for all z € B. Using Fact 1, we see that
Il. LOCAL STABILITY PROPERTIES OF FIXED POINTS g @) f (y") < 1. (4)
We first make precise our stability notions. As a consequence, the eigenvalues of the linearisation are

Definition 1: A fixed point z* is said to bestable for jnside the unit circle, and hence the fixed point is locally
xp+1 = f(xx) if for every e > 0 there existsy > 0 such asymptotically stable.
that for all initial states satisfyingro — 2*| < 4, solutions  cgnsider now the case whegé) is initially below f~1(-).
satisfy |z — 27| < e for all k € Z>o. A fixed point that is Then, in some neighbourhooB of the fixed point, it is
not stable is said to benstable necessary thatl f~!(z) < LLg(z) for all 2 € B. Using
Definition 2: A fixed point is said to beasymptotically Fact 1 again, we see that the eigenvalues of the lineanisatio
stableif, in addition to being stablgz, —2*| — 0 ask — co.  myst lie outside the unit circle. Therefore the fixed point is
For nonlinear systems, such as those described by eayastaple. ]
tion (1), we may clearly have more than one equilibrium point Remark 1: Note that, if the curves intersect, but do not
Consequently, we can modify the above definitions to holdoss, then the eigenvalues of the linearisation in (3) &re a

locally around a fixed point. In essence, this means thaether; Thjs follows because, at such a point the derivatives
exists a neighbourhood around the fixed point wherein we

have asymptotic stability. We refer to this lasal asymptotic doovp oy 4 0 . R
Stab”ity_y P y ymp @) = gl@) = fiat)g @) =1.

A well-known result from stability theory is that the localAs a consequence, this approach does not allow us to deter-
stability of a fixed point for a nonlinear system can benine the stability of the fixed point. In Section IV we use a
determined from the linearisation of the system at the fixefifferent approach to show that such points are saddle point
point, so long as the fixed point tsyperbolic A hyperbolic [ ]
point is one such that the Jacobian of the system equationRemark 2:We observe that, so long g and g are con-
evaluated at that point has eigenvalues strictly withinigetly  tinuous in a neighourhood dft, 1), then the rightmost fixed
outside the unit circle. In the former case, the point is ligca point must be either a stable crossing ofiatl). This follows
asymptotically stable, while in the latter case the point Bom the fact thatf andg must be defined over the entirety
unstable. (See, for example, [10, Theorem 1.3.7].) of [0, 1]. [ |

We will make use of the following terminology: Example 1:In [2], Ashikhmin et alpresented an EXIT

Definition 3: We call (z*,y*) astable crossingf for some chart for a(2,4)-regular LDPC code over a binary erasure
e > 0, the graphs intersect with(z) > f~'(z) for € channel with erasure probability. They derive the EXIT
(x* —e,x*) (i.e., when approaching from the left) apflt) < function for the check nodes ds,. = (IAC)3 and the EXIT
[ (z) for z € (z*, 2% +¢) (i.e., when moving away from the function for the variable nodes &z, = 1 — ¢ (1 — I,). In
fixed point to the right). We callz*, y*) anunstable crossing the above notation, this yields the system
if the graphs intersect with(z) < f~!(z) for x € (z* —¢,2*)
andg(x) > f~1(x) for z € (x*,2* +¢) Ter1 = yn = fu)

Theorem 1:Supposef(-), f~!(-), and g(-) are continu- yrr1 = 1—q(l—zk) =: g(ag).
ously differentiable in a neighbourhood of the fixed point ) o ] ) . )
(z*,y*). If, (z*,y*) is a stable crossing, then the fixed poin?he linearization about a fixed poiit*, y*) is easily calcu-
is locally asymptotically stable. If, on the other hang:,y*) lated as
is an unstable crossing, then the fixed point is unstable. Tt 0 3(y*)? T

Fact 1: Consider the pointsc*,y* € [0,1] satisfying [ ] = [ q 0 } [ Une } )

x* = f(y*) where f(-) is continuously differentiable and i i
monotonically increasing. Then The eigenvalues of the system matrix are thenlat=

£v3(y*)%q.
We examine the same valugs= 0.3,0.5 as in [2]. When
g = 0.3, there is only one crossing and it is @t 1). We see
in this case that the eigenvalues of the above Jacobian are at
Proof: The linearisation of (1) at a fixed point is given byx = +,/9/10 and the fixed point is locally asymptotically

[ Ths1 — ] _ [ 0 Fy) ] [ - 71: ] . stable as expected. (In fact, it is globally asymptotically

Pht1

_ 1

=0
y=y* /7 (@)

d
d_yf(y)

T=x*

() 0 B stable, but that does not follow from Theorem 1. Rather, see

gz be ¥ Lemma 2.) On the other hand, when= 0.5, we see that

It is easy to see that the eigenvalues for the above systérere are two crossings; one @t 1) and the other at about

matrix are at\ = ++/f"(y*)g’(x*). (0.2361,0.6180). For the crossing afl, 1), we see that the
We first consider the case whetg-) is initially above eigenvalues are ak = +./3/2. Therefore, the fixed point

f71(). In order for the curves to cross, we see that, iat(1,1) is unstable. For the crossing @2361,0.6180), the

Yet1 — Y*
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Fig. 1. Dashed liney = g(x), Solid line:y = f~1(x), *: Solution from Fig. 2. First four iterations for Example 1. Dashed line= g(z), Solid
(0.7,0.8) line: y = f~1(z), *: Solution from(0.7,0.8)

eigenvalues are ax = ++/0.5729. Consequently, the fixed T =

point is locally asymptotically stable, as expected. '

08 -

Finally, in [2], they note that the threshold for convergenc '

to (1,1) is atg = 1/3; i.e., the decoder converges fpx 1/3. o7}
If we examine the location of the eigenvalues given above, we osf i

see that\ = 1 precisely wherny = 1/3, and |A\| < 1 when osk”

g < 1/3, thus guaranteeing asymptotic stability of the fixed oal

point. |

03F

Remark 3:We note that the trajectories shown in Figure 1
and 4 do not lie between the EXIT functions as in common
EXIT chart plots in the literature. This comes from our hayin
taken initial conditions other than the origin and exangnin % o1 oz 03 o4 05 o5 07 o8 08 1
how the system evolves. To see that trajectories outside the
EXIT function “envelope” are indeed correct for these miiti
conditions, consider specifically Figure 1. From the imitid(:(i)g-of- Dashed liney = g(x), Solid line:y = f~'(z), + Solution from
condition (0.7,0.8), draw a vertical line until intersecting =~
y = g(z) (the dashed line). This is thgvalue of the next
point. Consequently, the next point must lie on a horizont,
line drawn from this intersection. Now draw a horizontaklin

0.2

ﬁ%e plots of the iterates are the same regardless of which
from (0.7, 0.8) until intersecting the curve — £(y) (the solid approach is taken. For example, consider Figure 3 where we

line). This gives thex-value of the next point. So we can drav\{/%zeszz ;ﬂ';?lthcsr;g :Zg(g’g\llg'lv\ghgng)l (:f(z S»Q(T)))O'i

a vertical line through this point. The next iterate lies be t :
intersection of the secondary lines. In Figure 2, we show i ), 91), (f(y1), 9(F(31))- In other words, each coordinate

. . . only changes every other iteration. |
procedure for the first four iterations. : . . .
. . . . Rather than consider the two-dimensional system described
Our choice of initial conditions was made to illustrate th

. . . fn (1), which is a natural and direct abstraction of the EXIT
wider range of behaviour possible for systems such as th%§1 t, we may consider the evolution of the composition
described by (1). This would correspond to the deCOdWapp;ingsfog(-) andgo f(-)

having access to non-zeeopriori knowledge (see, e.g., [12, ; : ; .
: . 2 o Consider the iterative mapping
Section 1ll.A]). In particular, we assume we can initialise
zit1 = [ o g(zk). (6)

both decoders with independent values, and we then map the
iterates; i.e., the pointgro, yo), (x1,%1), and so on.

By way of comparison, the common plots with points lyingvith initial condition zo € [0, 1]. We observe that this comes
on the EXIT functions come about by iterating only oneirectly from equation (1) where we have simply takenas
state at a time while holding the other state constant. Thatsubsequence of the sequencerpf We note that a fixed
is, the common staircase plot can be obtained by plottipgint of f o g, say z*, must correspond to an* andy* that
(0,90), (z1,90), (z1,91), (z2,91), and so on. Note that, if are fixed points of (1). In particulag,* = z* andy* = g(z*).
we start from an initial condition on one of the EXIT curvesTaking the Taylor series expansion b ¢(-) around a fixed



point z* gives us the following difference equation Then x* is hyperbolic and stable (hyperbolic and unstable)
. S e 1 . as a fixed point off@ if and only if the period q orbit is
a1~ fog(2h) + fg(z")g (a7)(zk — 27) hyperbolic and stable (hyperbolic and unstable).
24 f(y")g () 2k — 27). The above theorem simplifies the proof of:

Theorem 3:Suppos€z], y7) and(x3, y3) are stable cross-
ings. Then the period two orbit consisting ¢f,ys) and
21 — 2~ f(y")g () (2 — 2*) (7) (x3,y7) is locally asymptotically stable. Suppose, on the other
hand, that(z7, y7) and («3,y3) are unstable crossings. Then
tRe period two orbit is unstable.

Proof: Theorem 2 states that we need only examine the
linearisation of the two step mapping at one point of a period
two orbit which, for the orbit above, is
f'(W3)g' (3) 0

LI < et = P > 1 0 g (0
then sequences will move away from the fixed paiht Note As the linearisation is diagonal, the eigenvalues are gjrtis
that, if this approach is taken, one must carefully accoufiitgonal entries. As in the proof of Theorem 1, we observe
for the initial conditions. We will return to this point in ¢n thatif (27, y}) and (23, y3) are stable crossings, then both of

following section. f'(y3)g'(23) and f'(y7)g'(z7) are less than unity. Therefore,
both eigenvalues of the linearisation are within the umnitlei

IIl. PERIOD TWO ORBITS and the period two orbit is locally asymptotically stablen O
Suppose we have two isolated fixed points;,y;) and the other hand, if both points are unstable crossings, thén b
(z3,93). Take as an initial conditioriz?, y3). The solution f'(y3)¢'(z5) and f'(y7)g’ () will be greater than unity and,

Therefore, near the fixed poift*, y*), we have

This then gives an alternate proof of Theorem 1 since
similar equation can be derived fgro f. By using the same
relationship as in equation (4), we see that sequencesenil t
to contract to the fixed point*. If, on the other hand, we have
that

from this point is then consequently, the period two orbit will be unstable. H
- Fl) = o FlyD) = 2 Remark 4:We npte that, as_in the case of saddle point_s_, the
( L ) , ( Y2 2 ) , ( 91 b ) , --- (8) above approach gives us no information about the stabifity o
& 9(@1) = v 9(x2) = 3 period two orbits when one of the intersecting lines corre-
which is a period two orbit. sponds to a saddle point since the period two orbit will not be
We see, then, that an easy way to locate the period twgperbolic. [ |

orbits of (1) is to draw a horizontal and vertical line thrtug Example 2:We consider the sixth order polynomial given
each fixed point in the plane. Each intersection is then obg
point of a period two orbit. 31 247 675 365 15

Lemma 1:1f n is the total number of fixed points in the g(z) = E:c - 59:2 + 513 - 1—614 + ?xf’ + 28
square, then there aﬂa"g;l) period two orbits. ,
Proof: Suppose we have fixed points which correspond to2d taklefl(y) = 19(9)53 Vg/e see that there are crossings at
¢(n) period two orbits. We observe that adding another fixéd” ©): (3:1): (3:2) (3:2), alndl(l, 1). Looking at Figure 4,
point will result inn new period two orbits. We also observéVe Quickly see that0,0), (3,3), and (1,1) are unstable
that, in the case of a single fixed point, there are no periGPSSings. yielding unstable fixed points from Theorem 1.

H 1 3 3
two orbits. Consequently, we have the difference equation Stable crossings are @, 7) and (3, 9). _
Since there are five fixed points, Lemma 1 gives that there

pn+1)=¢(n)+n, ¢1)=0 are ten period two orbits. From Theorem 3 we see that there
is one asymptotically stable period two orbit consisting of

: : . L L L(5,3), (2,11 We also have three unstable period two
When discussing period two orbits, it is useful to consid r(giis‘lét’ (3.3)) P
the mapping obtained over two time steps:

o 6D GO} () (Do

Y1 = g0 fye-1) In Figure 4, we plot the curves = g(z) andz = f(y).

Definition 4: A period two orbit is stable (asymptoticallyThe stars show iterations of the system converging to the
stable, unstable, hyperbolic) if each periodic point ondH#t asymptotically stable period two orbit. Figure 5 shows the
is stable (asymptotically stable, unstable, hyperboba fixed evolution ofz; andy, as a function of timek. |
point of the two time step mapping. Looking at (9), we see that we have effectively decoupled

The following theorem states that it is only necessary the equations from each other. However, we note that, were
examine the stability properties of one point on an orbihga we to propagate these mappings forward, we would need
than both) [10, Theorem 1.3.9]: two initial conditions for each equation. We are given atiti

Theorem 2:Let f : ®* — R™ be continuously differen- conditionszy andyy. These then define our second conditions
tiable and letz* € R be a point on an orbit of period. asx; = f(yo) andy; = g(zo).

the solution of which is@.
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stable for the difference equation

Tpt1 = f o g(z). (11)

Proof: We first note that, if there is only one fixed point, then
it is a stable crossing. This follows since both mappingstmus
be defined over their entire domain and continuous. In other
words, g must (continuously) connect the left and right sides
of the unit square, whilg—! must (continuously) connect the
bottom and top sides of the unit square. As a consequgndée,
must initially be belowg. If there is only a single intersection,
then it is clearly a stable crossing. The exception to thifstie
sole intersection is at the origin, in which cage'(z) > g(z)
for thosex > z*.

Suppose that the fixed point is neither at 0 nor 1 and
consider any initial conditionzy € [0,2*). Then, sincez*
is unique, we know thayf o g(z) > z for all z € [0,z*).
Consequently, we have

Tpr1 = fog(wg) > ap = fog(ar_1) >xK1 > - > 0.

Since f o g(-) is continuous, monotone, anflo g(z*) = a*,
we see that the;, form a bounded, monotonically increasing
sequence. Therefore the sequence converges.té similar
argument holds for alk € (z*, 1], except that any sequence
will be monotonically decreasing as a consequencef of
g(x) < z for all x € (z*,1]. Therefore, for every initial
condition, the solution to (11) will asymptotically conger
to x*.

If the fixed point is at 0, we see thatz) > f~!(z) for all
z € (0,1]. Consequently, any initial condition will generate a
sequence converging to 0. Similarly, if the fixed point is at 1
theng(x) > f~1(z) for all z € [0,1) and all solutions will
converge to 1. [

Suppose we have two fixed poinfs?,y;) and (x3,y5)
ordered such that} < z3 andy; < y3 and such that no
fixed point lies between them. Further suppose that, on the
interval (z%,23) we have thatf~'(z) > g(z). Then, on

We saw in the preViOUS section that we can use the TaykWe interval (m’l‘7x;), T > f o g(l‘) Consequenﬂy, iterating
series expansion to determine local stability abouta fix@dtp ,, , = f o g(z;) leads to a monotonically decreasing
for the mappingsf o g(-) andg o f(). Suppose the two fixed sequence bounded below by. Alternately, if f 1 () < g(z)
points (1, y7) and (z3, y5) are locally asymptotically stable. for all 2 € (z1,23), then iteratingry., = fog(z)) generates

If we consider an initial conditiorfxy, yo) close to(z7,y3),
we see that even elements of the sequenceonverge tarj,
while odd elements of the sequence converge;taSimilarly,
even or odd elements of the sequengewill converge toy;

a monotonically increasing sequence bounded abovesby
We note that, iff ~1(z) < g(x), this implies thaty~!(y) <
fly), or thaty < g o f(y). Therefore, for an initial point

Yo € (¥7,y3), we see that

or yi, respectively. We therefore have a period two orbit with
the orbit defined by the points:?, v3) and (x5, y7).

IV. DOMAINS OF ATTRACTION

Yok+1) = 9O f(yar) > yor = g o f(Ya(k—1)) > Y2(k—1)
> >y >yl

Consequently, the sequengsg. will approachy;. In a similar

In the previous two sections, all of our results were local fashion, f~1(x) > g(z) implies g=!(y) > f(y) or, in other
the fixed points or to the period two orbits. In this sectioe, wwords,y > g o f(y). In this case, then, the sequengg will
take a more global view. Firstly, we can show that if there ispproachy;.

only one fixed point, then it is globally asymptotically stsb

Finally, we observe that the above statements hold for the

by which we mean that all initial conditions in the squarease when a fixed point is the leftmost or rightmost fixed point
eventually converge to the fixed point.

Lemma 2:Supposef andg are both continuous. If o g(+)

in the square. This allows us to define a simple partition of
the square which quickly gives the regions of attractions fo

has a unique fixed point*, thenx* is globally asymptotically the fixed points, as well as the regions of attraction for the



period two orbits. For each unstable or saddle point, draii, 1) will, in fact, allow the iterations to continue to the next

both a vertical and a horizontal line through the point. Aixed point.

locally asymptotically stable fixed point attracts all psinn Finally, we note that these results have the interesting

its (open) partition. Note that a saddle point will be at angor implication that it is actually possible teducethe information

If f~1(x) > g(x) around a saddle point, then it will lie oncontent via iterative decoding. As the trajectory plotted i

the bottom left corner of the partition containing its domaiFigure 1 shows, it is possible to start closg1p1) and yet to

of attraction. If f~!(z) < g(x) around a saddle point, thenultimately move quite far away. In fact, sin¢g, 1) is unstable

the saddle point will be on the top right corner of the pantiti and (0.2361,0.6180) attracts every initial condition except

containing its domain of attraction. (1,1), we can start arbitrarily close to “perfect information”
Example 3:Looking again at the system in Example 2, wand yet iterate to a distant point.

see that the square is partitioned into four sections. Theailo

of attraction for (1,1) is {(z,y) € (0,3) x (0,1)} while ACKNOWLEDGEMENTS
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results of Section IV guarantee that the trajectory coreerg

to the first fixed point to the right of, or at, the origin (so ¢pn

as the origin is not an unstable crossing). However, oultsesu

demonstrate that the ability to bias the decoders or make

use of somea priori knowledge will not always guarantee

convergence tdl1, 1).

We note that, with a stable crossing yielding a locally
asymptotically stable fixed point, a small perturbation yawa
from the fixed point in the direction dft, 1) will not cause the
decoder to converge. Rather, the trajectory will simplyinet
to the fixed point. If, on the other hand, the curves merely
intersect but do not cross, a perturbation in the directibn o
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