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Abstract— In this paper we present an abstraction of the
extrinsic information transfer (EXIT) chart as the interco n-
nection of two nonlinear systems in feedback with each other.
We present results on the stability of fixed points for such a
dynamical system and use this framework to rederive the well-
known stability condition, connecting this to the one-dimensional
dynamical system describing the fractions of erasure for low-
density parity-check (LDPC) codes on the binary erasure channel
(BEC). We observe that the error threshold corresponds to a fixed
point bifurcation for this one-dimensional system, and show that
this information can be visualized using a well-known tool from
control theory: the root locus plot. We further show that these
bifurcations can be seen by examining the EXIT chart.

I. I NTRODUCTION

The dramatic success of turbo codes [3] and the subsequent
rediscovery of low-density parity-check codes [6], [10] have
made iterative decoding a subject of intense research over
the past decade. A unifying framework for such codes is
provided by the the sum–product algorithm, operating on a
suitably defined sparse graph representation of the code [8].
While it is now well known that the sum–product algorithm
is exact (in the sense of generating the requisite a posteriori
probabilities of the transmitted symbols) when the graph is
a tree, explaining the empirical success of the algorithm on
graphs which contain cycles remains a problem of fundamental
interest [17].

One approach to studying the complicated behaviour of
iterative decoding algorithms is to consider such algorithms as
nonlinear dynamical systems. Understanding the fixed points
of these algorithms then opens the way to a better understand-
ing of their global dynamics. For the turbo code formulation
of iterative decoding, such approaches have been considered
by Richardson [12], Agrawal and Vardy [1], and Fu [5].
A common difficulty encountered in such approaches is the
necessarily high order of the dynamical systems, and a range
of solutions to this problem are suggested in [12], [1], [5].

A quite different means of analysing iterative decoding is
the EXtrinsic Information Transfer (EXIT) chart method of
ten Brink [16], in which a single scalar quantity (the extrinsic
information between constituent decoders) is effectivelyused
as a surrogate state variable. In this fashion, iterative decoding
can be visualized as a trajectory in the plane, the axes of

which correspond to two successive time-steps in the iterative
process.

EXIT chart-based methods have enjoyed immense practical
success, and now form part of the toolbox for engineers ana-
lyzing and designing other (iteratively implemented) elements
of the receiver chain, including multiuser detectors, equalizers,
and space–time receivers. For iterative decoding, it is now
known that the pragmatic basis of EXIT charts in fact rests
on strong theoretical underpinnings [11], [2].

In [7] we employed tools of dynamical systems theory to
study EXIT charts. Our starting point was the observation that
the exchange of messages between constituent decoders can
be seen as the feedback interconnection of two discrete-time
dynamical systems. To this end, we consider the following
two-dimensional system

xk+1 = f(yk)

yk+1 = g(xk)
(1)

where f, g : [0, 1] → [0, 1], and bothf(·) and g(·) are
monotonically increasing on[0, 1]. We assume we are given
initial conditionsx0, y0 ∈ [0, 1].

An EXIT chart is then the plot ofx = f(y) andy = g(x).
Assuming the existence of an (at least local) inverse for the
functionf , fixed points of (1) consist of those points(x∗, y∗)
satisfying

g(x∗) = f−1(x∗), y∗ = g(x∗). (2)

If we plot the two functions in the plane, we see that these
points are the intersections of the graphs ofy = g(x) and
y = f−1(x). If both f and g are continuous on the square,
Brouwer’s fixed point theorem guarantees the existence of at
least one fixed point. Obvious questions are: What can we say
about the stability of these fixed points? What can we say
about domains of attraction for fixed points?

In this paper we present results connecting the existence
of fixed points for the dynamical system (1) and for the
one-dimensional dynamical system describing the fractionof
erasures at each iteration for low-density parity-check (LDPC)
codes over the binary erasure channel (BEC) using a belief
propagation decoder. In Section II we review results from [7]
characterizing the stability of fixed points for the generalfeed-
back connection (1). In Section III, we show how the above



formulation gives rise to the well-known stability condition
[14] and how this demonstrates that the EXIT chart provides a
simple factorization of the one-dimensional dynamics. Finally,
in Section IV we make novel use of the well-known root locus
plot from control theory. This allows us to track the location of
fixed points of the iterative decoding algorithm as a function of
the channel erasure probability. We observe that the decoding
threshold value corresponds to a bifurcation point for the one-
dimensional dynamics describing the fraction of erasures.We
also note that these bifurcations can be seen by examining the
EXIT chart.

II. F IXED POINTS

We first make precise our stability notions.
Definition 1: A fixed point x∗ is said to bestable for

xk+1 = f(xk) if for every ε > 0 there existsδ > 0 such
that for all initial states satisfying|x0 − x∗| < δ, solutions
satisfy |xk − x∗| < ε for all k ∈ Z≥0. A fixed point that is
not stable is said to beunstable.

Definition 2: A fixed point is said to beasymptotically
stableif, in addition to being stable,|xk−x∗| → 0 ask → ∞.

For nonlinear systems, such as those described by equa-
tion (1), we may clearly have more than one equilibrium point.
Consequently, we can modify the above definitions to hold
locally around a fixed point. In essence, this means that there
exists a neighbourhood around the fixed point wherein we
have asymptotic stability. We refer to this as local asymptotic
stability, and say that the fixed point islocally asymptotically
stable (LAS).

We will make use of the following terminology:
Definition 3: We call (x∗, y∗) a stable crossingif for some

ε > 0, the graphs intersect withg(x) > f−1(x) for x ∈
(x∗−ε, x∗) (i.e., when approaching from the left) andg(x) <

f−1(x) for x ∈ (x∗, x∗+ε) (i.e., when moving away from the
fixed point to the right). We call(x∗, y∗) anunstable crossing
if the graphs intersect withg(x) < f−1(x) for x ∈ (x∗−ε, x∗)
andg(x) > f−1(x) for x ∈ (x∗, x∗ + ε)

The following was proved in [7]:
Theorem 1:Supposef(·), f−1(·), and g(·) are continu-

ously differentiable in a neighbourhood of the fixed point
(x∗, y∗). If (x∗, y∗) is a stable crossing, then the fixed point
is LAS. If, on the other hand,(x∗, y∗) is an unstable crossing,
then the fixed point is unstable.

Remark 1:Note that, if the curves intersect, but do not
cross, then it is possible to show that the fixed point is, in
fact, a saddle point. �

Remark 2:We observe that, so long asf and g are con-
tinuous in a neighourhood of(1, 1), then the rightmost fixed
point must be either a stable crossing or at(1, 1). This follows
from the fact thatf and g must be defined over the entirety
of [0, 1]. �

The previous result was local to the fixed points. Next, we
take a more global view. We make two observations. First, if
there is only one fixed point, then it is globally asymptotically
stable; by which we mean that all initial conditions in the

square eventually converge to the fixed point. The following
was proved in [7]:

Lemma 1:Supposef andg are both continuous. Iff ◦g(·)
has a unique fixed pointx∗, thenx∗ is globally asymptotically
stable for the difference equationxk+1 = f ◦ g(xk).

Second, suppose we have multiple fixed points. In particular,
consider two fixed points(x∗

1, y
∗
1) and (x∗

2, y
∗
2) ordered such

that x∗
1 < x∗

2 and y∗
1 < y∗

2 and such that no fixed point lies
between them. In [7], we showed that iff−1(x) > g(x) for
x ∈ (x∗

1, x
∗
2), then iterates ofxk+1 = f ◦ g(xk) with x0 ∈

(x∗
1, x

∗
2) converge tox∗

1. If, on the other hand,f−1(x) < g(x)
for all x ∈ (x∗

1, x
∗
2), then iterates ofxk+1 = f ◦ g(xk) with

x0 ∈ (x∗
1, x

∗
2) converge tox∗

2.
Finally, we observe that the above statements hold for the

case when a fixed point is the leftmost or rightmost fixed point
in the square. This allows us to define a simple partition of the
square which quickly gives the regions of attractions for the
fixed points. For each unstable or saddle point, draw both a
vertical and a horizontal line through the point. A LAS fixed
point attracts all points in its (open) partition. Note thata
saddle point will be at a corner. Iff−1(x) ≥ g(x) around a
saddle point, then it will lie on the bottom left corner of the
partition containing its domain of attraction. Iff−1(x) ≤ g(x)
around a saddle point, then the saddle point will be on the top
right corner of the partition containing its domain of attraction.

III. LDPC CODES

We now turn our attention to LDPC codes transmitted over
the BEC with erasure probabilityε > 0. We use the degree
distribution polynomials

λ(x) =
∑

i

λix
i−1, ρ(x) =

∑

i

ρix
i−1 (3)

as defined in [9]. In [15], it was shown that the EXIT function
for the variable nodes isIva

out = 1 − ελ(1 − Iva
in ), while the

EXIT function for the check nodes isIch
out = ρ(Ich

in ). In the
dynamical system formulation of (1), this yields

xk+1 = ρ(yk)
yk+1 = 1 − ελ(1 − xk).

(4)

For successful decoding it has been observed that a “con-
vergence tunnel” allowing initial conditions at the originto
converge to the point(1, 1) is necessary [2]. Therefore, at a
minimum, we require local asymptotic stability of the point
(1, 1). We therefore examine the linearization of (4) about
(1, 1) and obtain

[

x̂k+1

ŷk+1

]

=

[

0 ρ′(1)
ελ′(0) 0

] [

x̂k

ŷk

]

, (5)

which has eigenvalues at±
√

ελ′(0)ρ′(1). For local asymptotic
stability, we require that both eigenvalues lie strictly within the
unit circle, leading to the condition

ε <
1

λ′(0)ρ′(1)
, (6)

which we immediately recognize as the celebrated stability
condition for the BEC [14].



Looking at (4), we consider the change of variables given
by z = 1 − y, x = x. This gives

xk+1 = ρ(1 − zk)
zk+1 = ελ(1 − xk).

(7)

Consider the two-step mapping onz; i.e.,

zk+2 = 1 − yk+2 = 1 − (1 − ελ(1 − xk+1)

= ελ(1 − ρ(1 − zk)) (8)

which is precisely the fraction of errors after each iteration
of belief propagation decoding [14]. This is not surprising, of
course, as it is this one-dimensional dynamical system that
originally gave rise to the stability condition (6). Note that,
for successful decoding, one wants the fraction of erasuresto
go to zero as the number of iterations goes to infinity. The
change of variables bears this out as, for the EXIT chart we
required local asymptotic stability of the point(x, y) = (1, 1),
whereas, for system (8), we require stability ofz = 0 = 1−y.

The above observation indicates that there is no fundamental
difference between the one-dimensional system and the EXIT
chart. However, the EXIT chart is significantly easier to un-
derstand. Consider, for example, the one-dimensional system
describing the fraction of errors for the(3, 6)-regular LDPC
code (system (8) with indices relabeled):

zk+1 = ε
(

25z2
k − 100z3

k + 200z4
k − 250z5

k + 210z6
k

−120z7
k + 45z8

k − 10z9
k + z10

k

)

(9)

and compare this to the dynamical system EXIT chart formu-
lation:

xk+1 = y5
k

yk+1 = 1 − ε(x2
k
− 2xk + 1).

(10)

Clearly, the latter formulation is simpler.
For the (3, 6)-regular LDPC code, we observe that the

stability condition is vacuous sinceλ′(0) = 0. In other words,
for (8), the origin is LAS for all finite values ofε. This
motivates the following question: when are there fixed points
of (8), other than the origin, in the range[0, 1]?

To this end, we write down the condition for a fixed point
of (8); i.e., ελ(1 − ρ(1 − z)) = z, which is equivalent to

−λ(1 − ρ(1 − z)) + Kz = 0, (11)

whereK = 1

ε
. Equation (11) is in so-calledroot locus form.

IV. ROOT LOCUS AND BIFURCATIONS

The root locus plot is a common graphical tool in control
theory for use in designing controllers for single-input single-
output linear systems (see, for example, [4, Chapter 5]). In
particular, the root locus describes how the closed-loop poles
of a linear feedback system vary as a function of feedback
gain. In the context of the one-dimensional system described
by (8), we can use the root locus plot to visualise how the fixed
points vary as a function of the channel erasure probabilityε.

Figure 1(a) shows the root locus plot coming from (9)
and (11). WhenK = 0, the roots are simply the roots of
λ(1 − ρ(1 − z)) = 0, while whenK = +∞ one root will be
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Fig. 1. Root locus plot for(3, 6)-regular LDPC fixed points. (a) Root locus.
(b) Locus for various values ofε: (A) ε = 1

5
; (B) ε = 1

3
; (C) ε = 0.4294

(threshold value); (D)ε = 1

2
; (E) ε = 1.

at the origin and the others will have an infinite modulus and
be distributed symmetrically about a point on the real axis.
The movement between these two extremes is continuous.
Figure 1(a) shows the points atK = 0 as x’s. Note that,
in this case, each x denotes a double root, including two at
the origin.

Of course, our interest is not inK, but in ε ∈ [0, 1]. This
clearly corresponds toK ∈ [1, +∞). Furthermore, we are
interested in varyingε from zero to one; i.e., we wish to start
with a zero probability of erasure and increase until we reach
the threshold value. Atε = 0, all roots, except the one at
the origin, will have an infinite modulus. Asε increases, the
roots will move inward toward the x’s. Since (8) describes
the fraction of erasures at each iteration, our interest is in the
situation when there are roots on the real axis between zero
and one.

A. (3, 6)-regular LDPC Code

Figure 1(b) shows the relevant portion of the real axis and
various values ofε. As ε increases from1

5
to the threshold

value of 0.4294 [13, §2.9.7], the roots move from points A
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Fig. 2. Trajectories for (8) withε = 0.6 from initial conditions0.6, 0.1,
and0.09. Unstable fixed point at approximately0.099.

to point C. At point C, a new fixed point is created. Asε

continues to increase, this fixed point bifurcates, with onefixed
point moving in towards the origin, and another moving away
from the origin. It is not difficult to show that the fixed point
which moves in toward the origin is unstable and that which
moves away from the origin is LAS. Figure 2 shows solutions
from three different initial conditions (x0 = 0.6, 0.1, 0.09)
when ε = 0.6. Observe that there are LAS fixed points at
the origin and approximately0.585. There is also an unstable
fixed point at approximately0.099.

Recall that the origin is LAS for any value ofε. This is
consistent with the root locus plot in Figure 1(b) as, for any
finite value of ε, the unstable fixed point will be bounded
away from the origin. Furthermore, we can observe a sizable
gap between the origin and the unstable fixed point at point
(E) corresponding toε = 1.

We observe that this bifurcation behavior is what we would
also expect from our analysis of the EXIT chart in Section II.
Specifically, Figures 3(a) and 3(b) show the EXIT chart for the
(3, 6)-regular LDPC code for a value below the threshold (ε =
0.2 in Figure 3(a)) and a value above the threshold (ε = 0.6 in
Figure 3(b)). We observe that, as the channel error probability
increases, the variable node curve moves down until it first
intersects the check node curve at approximately(0.22, 0.74),
creating a fixed point. As the error probability continues to
increase, the variable node curve continues to move down,
causing the fixed point at(0.22, 0.74) to bifurcate into a LAS
fixed point (that moves toward the origin) and an unstable
fixed point (that moves toward(1, 1). Note that(1, 1) remains
a LAS fixed point. For the fixed valueε = 0.6, Theorem 1
and Figure 3(b) immediately imply three fixed points; two
LAS and one unstable. We also see this by examining the
root locus plot in Figure 1(b), where their will be three roots
on the real axis between zero and one.

Finally, we observe that the point where the root locus
plot “breaks in” to the real axis between zero and one,
in Figure 1(b) this is near0.26, corresponds to the point
where the convergence of the iterative decoding algorithm
slows down when operating close to the threshold value. In
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Fig. 3. EXIT chart for(3, 6)-regular LDPC code. (a)ε = 0.2 and initial
condition (ρ(0.8), 0.8). Note trajectory moves up and right. (b)ε = 0.6 and
initial condition (ρ(0.8), 0.8). Note trajectory moves down and left.

particular, Figure 4 show the trajectory of (8) for a channel
error probability of ε = 0.4293, just below the threshold
value ofε = 0.4294. Note that convergence requires over 250
iterations. We can see the same behavior in the EXIT chart
as the “convergence tunnel” will be very nearly closed at this
value ofε.

B. (2, 4)-regular LDPC Code

We now briefly turn our attention to a code that displays a
qualitatively different bifurcation behavior: the(2, 4)-regular
LDPC code. This qualitative difference is visible in both the
root locus plot and the EXIT chart. Figure 5 shows the root
locus corresponding to (11) withλ(z) = z and ρ(z) = z3.
Whereas for the(3, 6)-regular code we saw the locus intersect
the real axis at about0.26 when the erasure probability reached
the threshold value (thereby creating a new fixed point), the
locus for the(2, 4)-regular LDPC code moves from left to right
on the real axis, crossing the imaginary axis at the threshold
value of ε = 1

3
. As ε continues to increase, the original LAS

fixed point at the origin bifurcates into an unstable fixed point
at the origin and a LAS fixed point that moves away from the
origin.

As for the (3, 6)-regular LDPC code, this behavior is
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consistent with the EXIT chart, shown in Figures 6(a) and
6(b). As opposed to the “pinching off” we observed for the
(3, 6)-regular EXIT chart, as the error probability increases,
the variable node pivots downward with its rightmost point
fixed at (1, 1). At the threshold value ofε = 1

3
, the variable

node curve is tangent to the check node curve at(1, 1). As
the error probability continues to increase, the fixed pointat
(1, 1) bifurcates into an unstable fixed point at(1, 1) and a
LAS fixed point that moves toward the origin.
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