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Abstract—In this paper we present an abstraction of the which correspond to two successive time-steps in the ierat
extrinsic information transfer (EXIT) chart as the intercon- process.

nection of two nonlinear systems in feedback with each other EXIT chart-based methods have enjoyed immense practical

We present results on the stability of fixed points for such a ccess. and now form part of the toolbox for endineers ana-
dynamical system and use this framework to rederive the well success, w p X gl S

known stability condition, connecting this to the one-dimasional  lyZing and designing other (iteratively implemented) ederts
dynamical system describing the fractions of erasure for la-  of the receiver chain, including multiuser detectors, ¢igqaes,
density parity-check (LDPC) codes on the binary erasure chanel  and space—-time receivers. For iterative decoding, it is now

(BEC). We observe that the error threshold corresponds to a%ed o that the pragmatic basis of EXIT charts in fact rests
point bifurcation for this one-dimensional system, and shw that . S
on strong theoretical underpinnings [11], [2].

this information can be visualized using a well-known tool fom

control theory: the root locus plot. We further show that these In [7] we employed tools of dynamical systems theory to
bifurcations can be seen by examining the EXIT chart. study EXIT charts. Our starting point was the observatiat th
the exchange of messages between constituent decoders can
|. INTRODUCTION be seen as the feedback interconnection of two discrete-tim

dynamical systems. To this end, we consider the following
The dramatic success of turbo codes [3] and the subsequey-dimensional system

rediscovery of low-density parity-check codes [6], [10v&a
made iterative decoding a subject of intense research over i1 = f(yr) (1)
the past decade. A unifying framework for such codes is Yrt1 = g(zk)
provided by the the sum—product algorithm, operating onyghere f,g : [0,1] — [0,1], and both f(:) and g(-) are
suitably defined sparse graph representation of the code [@bnotonically increasing off, 1]. We assume we are given
While it is now well known that the sum—product algorithmnitial conditionsz, 3o € [0, 1].
is exact (in the sense of generating the requisite a posterio An EXIT chart is then the plot of = f(y) andy = g(z).
probabilities of the transmitted symbols) when the graph mssuming the existence of an (at least local) inverse for the

a tree, explaining the empirical success of the algorithm @inction f, fixed points of (1) consist of those points*, y*)
graphs which contain cycles remains a problem of fundarhengatisfying

interest [17]. . 1. . .

One approach to studying the complicated behaviour of g(@”) = f7(2"), y" =g(a7). @)
iterative decoding algorithms is to consider such algarétas If we plot the two functions in the plane, we see that these
nonlinear dynamical systems. Understanding the fixed poimjoints are the intersections of the graphsyof= g(z) and
of these algorithms then opens the way to a better understapd= f~1(z). If both f and g are continuous on the square,
ing of their global dynamics. For the turbo code formulatioBrouwer’s fixed point theorem guarantees the existence of at
of iterative decoding, such approaches have been condideest one fixed point. Obvious questions are: What can we say
by Richardson [12], Agrawal and Vardy [1], and Fu [5]about the stability of these fixed points? What can we say
A common difficulty encountered in such approaches is thout domains of attraction for fixed points?
necessarily high order of the dynamical systems, and a rangén this paper we present results connecting the existence
of solutions to this problem are suggested in [12], [1], [S]. of fixed points for the dynamical system (1) and for the

A quite different means of analysing iterative decoding ishe-dimensional dynamical system describing the fraatibn
the EXtrinsic Information Transfer (EXIT) chart method oferasures at each iteration for low-density parity-cheddRLC)
ten Brink [16], in which a single scalar quantity (the exsitm codes over the binary erasure channel (BEC) using a belief
information between constituent decoders) is effectivedgd propagation decoder. In Section Il we review results froin [7
as a surrogate state variable. In this fashion, iteratieadieag characterizing the stability of fixed points for the gendeald-
can be visualized as a trajectory in the plane, the axes la@ck connection (1). In Section Ill, we show how the above



formulation gives rise to the well-known stability conditi square eventually converge to the fixed point. The following
[14] and how this demonstrates that the EXIT chart providesaas proved in [7]:

simple factorization of the one-dimensional dynamicsakyn Lemma 1:Supposef andg are both continuous. If o g(+)

in Section IV we make novel use of the well-known root locubas a unique fixed point*, thenz* is globally asymptotically
plot from control theory. This allows us to track the locatimf ~ stable for the difference equation1 = f o g(xx).

fixed points of the iterative decoding algorithm as a functé Second, suppose we have multiple fixed points. In particular
the channel erasure probability. We observe that the degodtonsider two fixed point$z}, y7) and (x5, y3) ordered such
threshold value corresponds to a bifurcation point for the-o that 2z} < z3 andy; < y; and such that no fixed point lies
dimensional dynamics describing the fraction of erasus. between them. In [7], we showed that fif ! (z) > g(x) for
also note that these bifurcations can be seen by examinéng the (z7, %), then iterates ofcy11 = f o g(ay) with zy €

EXIT chart. (x%, %) converge tars. If, on the other handf~!(z) < g(x)
for all © € (a7, x3), then iterates ofc, 1 = f o g(ay) with
Il. FIXED POINTS xo € (x7,x3) converge tars.

Finally, we observe that the above statements hold for the
case when a fixed point is the leftmost or rightmost fixed point
in the square. This allows us to define a simple partition ef th
square which quickly gives the regions of attractions fa th
fixed points. For each unstable or saddle point, draw both a
vertical and a horizontal line through the point. A LAS fixed
e ) - . , point attracts all points in its (open) partition. Note tteat

Def|_n|t.|on 2:.A fixed pomt is said to beasymptotically saddle point will be at a corner. If~'(z) > ¢(z) around a
stableif, in addition to being stablez, —a*| — 0 ask — 0. gaqdle point, then it will lie on the bottom left corer of the
_ For nonlinear systems, such as those described by eqyariition containing its domain of attraction. ff- 1 (z) < g(x)
tion (1), we may clearly have more than one equilibrium poing 5 nq 4 saddle point, then the saddle point will be on the top

Consequently, we can modify the above definitions to hojghn; corner of the partition containing its domain of attian.
locally around a fixed point. In essence, this means thaether

exists a neighbourhood around the fixed point wherein we lll. LDPC CobEs
have asymptotic stability. We refer to this as local asyripto  We now turn our attention to LDPC codes transmitted over
stability, and say that the fixed pointliscally asymptotically the BEC with erasure probability > 0. We use the degree

We first make precise our stability notions.

Definition 1: A fixed point z* is said to bestable for
zp+1 = f(xk) if for every e > 0 there existsy > 0 such
that for all initial states satisfyindrg — 2*| < J, solutions
satisfy |z, — 2*| < e for all k € Z>,. A fixed point that is
not stable is said to benstable

stable (LAS) distribution polynomials
We will make use of the following terminology: i1 i1
Definition 3: We call (z*, 4*) a stable crossindf for some Az) = Z A, p(z) = sz-:c ©)

e > 0, the graphs intersect witg(z) > f~1(z) for x € . ) , ,

(z* —¢,2*) (i.e., when approaching from the left) apt) < 8S defined in [9]. In [15], it was shown that the EXIT function

F1(z) for z € (a*, 2" +¢) (i.e., when moving away from the for the variable nodes ig;s, = 1 — e_)\(& — Iﬁ?)’cyh”e the

fixed point to the right). We callz*, y*) anunstable crossing EXIT function for the check nodes i, = p(I3;'). In the

if the graphs intersect with(z) < f~!(z) for z € (z*—¢, z%) dynamical system formulation of (1), this yields

andg(x) > f~1(x) for z € (x*,2* +¢) tre1 = plyr) 4
The following was proved in [7]: Yer1 = 1—eN1 —zp).

. —1 1 -
Theorem 1:Supposef(-), /' (), and g(-) are continu- e, o \ocosey) decoding it has been observed that a “con-
ously differentiable in a neighbourhood of the fixed poi

. . ey . . _r\;ergence tunnel” allowing initial conditions at the origio

.(x 7). I (@ y7) s a stable*cr(zss_lng, then the fixed IE)O"N'I:onverge to the poinfl, 1) is necessary [2]. Therefore, at a

is LAS. If, on the other hand,u", ") is an unstable crossing, yinimym, we require local asymptotic stability of the point

then the fixed point is ur?stable. . 1,1). We therefore examine the linearization of (4) about
Remark 1:Note that, if the curves intersect, but do noE_‘1 1) and obtain

cross, then it is possible to show that the fixed point is, in’

fact, a saddle point. | { Th1 } _ { 0 (1) } [ ay, ] 5)
Remark 2:We observe that, so long gsand g are con- Jr+1 eX(0) 0 Uk |’

tinuous in a neighourhood dff, 1), then the rightmost fixed |, ich has eigenvalues at,/eN (0)p/(1). For local asymptotic

point must be either a stable crossing ot#atl). This follows  giapijity e require that both eigenvalues lie strictiyhin the
from the fact thatf and g must be defined over the entirety, it circle leading to the condition

of [0, 1].
The previous result was local to the fixed points. Next, we €< é, (6)

take a more global view. We make two observations. First, if N (0)p'(1)

there is only one fixed point, then it is globally asymptdtica which we immediately recognize as the celebrated stability

stable; by which we mean that all initial conditions in theondition for the BEC [14].



Looking at (4), we consider the change of variables given
by z =1 —y, x = x. This gives 3

rer1 = p(l—z) o
7
Zk+1 = 6)\(1 — l‘k) ( )

Consider the two-step mapping ani.e.,

Imaginary Axis
o N

Zhte = l—ypro=1—(1—eX(l — xg41)
= Al —p(l —2)) (8)

which is precisely the fraction of errors after each itenati
of belief propagation decoding [14]. This is not surprising
course, as it is this one-dimensional dynamical system that
originally gave rise to the stability condition (6). Noteath

Real Axis

for successful decoding, one wants the fraction of erasiores @
go to zero as the number of iterations goes to infinity. The

change of variables bears this out as, for the EXIT chart we
required local asymptotic stability of the poifit, y) = (1, 1), T

whereas, for system (8), we require stabilityzof 0 = 1 —y. "

The above observation indicates that there is no fundarhenta
difference between the one-dimensional system and the EXIT
chart. However, the EXIT chart is significantly easier to un-
derstand. Consider, for example, the one-dimensionaksyst
describing the fraction of errors for th@, 6)-regular LDPC
code (system (8) with indices relabeled):

Imaginary Axis
o
@
fm
To
(el
=]

zpe1 = €(2527 — 10023 + 2002, — 2502, + 210z 5
—120z] + 452§ — 10z}, + 2°) 9) R T N E R R Y
and compare this to the dynamical system EXIT chart formu-
lation: (b)
— 5
T+t = Yk (10) g ) )
Y1 = 1-— E(:Ci — 2xp + 1>. Fig. 1. Root locus plot fof3, 6)-regular LDPC fixed points. (a) Root locus.

(b) Locus for various values of: (A) e = £; (B) € = 1; (C) e = 0.4294
Clearly, the latter formulation is simpler. (threshold value); (D = 3; (E) e = 1.
For the (3,6)-regular LDPC code, we observe that the
stability condition is vacuous sinc€(0) = 0. In other words,
for (8), the origin is LAS for all finite values ot. This at the origin and the others will have an infinite modulus and
motivates the following question: when are there fixed moinbe distributed symmetrically about a point on the real axis.
of (8), other than the origin, in the rande 1]? The movement between these two extremes is continuous.
To this end, we write down the condition for a fixed poinFigure 1(a) shows the points @ = 0 as x’s. Note that,
of (8); i.e.,eA(1 — p(1 — z)) = 2, which is equivalent to in this case, each x denotes a double root, including two at
the origin.
—Al = p(l=2)) + Kz =0, (11) " Of course, our interest is not ift, but in ¢ [0,1]. This
where K = 1. Equation (11) is in so-calletbot locus form ~ Clearly corresponds td(" € [1,+oc). Furthermore, we are
interested in varying from zero to one; i.e., we wish to start
IV. ROOT LOCUS AND BIFURCATIONS with a zero probability of erasure and increase until we meac
The root locus plot is a common graphical tool in contrghe threshold value. At = 0, all roots, except the one at
theory for use in designing controllers for single-inputgge- the origin, will have an infinite modulus. Asincreases, the
output linear systems (see, for example, [4, Chapter 5]). Ifaots will move inward toward the x’s. Since (8) describes
particular, the root locus describes how the Closed_lodpspothefraction of erasures at each iteration, our interest is in the
of a linear feedback system vary as a function of feedbagkuation when there are roots on the real axis between zero
gain. In the context of the one-dimensional system desdriband one.
by (8), we can use the root locus plot to visualise how the fixed
points vary as a function of the channel erasure probahility” (3:6)-régular LDPC Code
Figure 1(a) shows the root locus plot coming from (9) Figure 1(b) shows the relevant portion of the real axis and
and (11). WhenK = 0, the roots are simply the roots ofvarious values ok. As e increases fromt to the threshold
A1 = p(1 = 2)) =0, while whenK = +oo one root will be value of 0.4294 [13, §2.9.7], the roots move from points A
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Fig. 2. Trajectories for (8) witte = 0.6 from initial conditions0.6, 0.1, @

and0.09. Unstable fixed point at approximatety099.

to point C. At point C, a new fixed point is created. As
continues to increase, this fixed point bifurcates, with fixe
point moving in towards the origin, and another moving away
from the origin. It is not difficult to show that the fixed point
which moves in toward the origin is unstable and that which

moves away from the origin is LAS. Figure 2 shows solutions

03

from three different initial conditionsz, = 0.6,0.1,0.09)
whene = 0.6. Observe that there are LAS fixed points at
the origin and approximatel§.585. There is also an unstable i ez o8 o _as o5 07 a5 o8 1
fixed point at approximatelg.099. o
Recall that the origin is LAS for any value ef This is (b)

c_o_nS|stent with the root locus p_lOt n Flgure .1(b) as, for a%g. 3. EXIT chart for(3, 6)-regular LDPC code. (a3 = 0.2 and initial
finite value ofe, the unstable fixed point will be bounded.qngition (p(0.8),0.8). Note trajectory moves up and right. (b)= 0.6 and
away from the origin. Furthermore, we can observe a sizaliaial condition (p(0.8),0.8). Note trajectory moves down and left.
gap between the origin and the unstable fixed point at point

(E) corresponding te = 1.

We observe that this bifurcation behavior is what we woulgarticular, Figure 4 show the trajectory of (8) for a channel
also expect from our analysis of the EXIT chart in Section IBrror probability ofe = 0.4293, just below the threshold
Specifically, Figures 3(a) and 3(b) show the EXIT chart far thvalue ofe = 0.4294. Note that convergence requires over 250
(3,6)-regular LDPC code for a value below the threshele=( iterations. We can see the same behavior in the EXIT chart
0.2 in Figure 3(a)) and a value above the threshele-(0.6 in ~ as the “convergence tunnel” will be very nearly closed a thi
Figure 3(b)). We observe that, as the channel error prababilvalue ofe.
increases, the variable node curve moves down until it first
intersects the check node curve at approximaelg2,0.74), B (2,4)-regular LDPC Code
creating a fixed point. As the error probability continues to We now briefly turn our attention to a code that displays a
increase, the variable node curve continues to move dovgualitatively different bifurcation behavior: th@, 4)-regular
causing the fixed point g0.22,0.74) to bifurcate into a LAS LDPC code. This qualitative difference is visible in botte th
fixed point (that moves toward the origin) and an unstabteot locus plot and the EXIT chart. Figure 5 shows the root
fixed point (that moves toward, 1). Note that(1, 1) remains locus corresponding to (11) with(z) = z and p(z) = 23.

a LAS fixed point. For the fixed value = 0.6, Theorem 1 Whereas for thé3, 6)-regular code we saw the locus intersect
and Figure 3(b) immediately imply three fixed points; twahe real axis at abot26 when the erasure probability reached
LAS and one unstable. We also see this by examining thiee threshold value (thereby creating a new fixed point), the
root locus plot in Figure 1(b), where their will be three otlocus for the(2, 4)-regular LDPC code moves from left to right
on the real axis between zero and one. on the real axis, crossing the imaginary axis at the threshol

Finally, we observe that the point where the root locuglue ofe = % As e continues to increase, the original LAS
plot “breaks in” to the real axis between zero and onéxed point at the origin bifurcates into an unstable fixednpoi
in Figure 1(b) this is neaf.26, corresponds to the pointat the origin and a LAS fixed point that moves away from the
where the convergence of the iterative decoding algorithomigin.
slows down when operating close to the threshold value. InAs for the (3,6)-regular LDPC code, this behavior is
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Fig. 5. Root locus for th¢2, 4)-regular LDPC code. Solid line corresponds
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toe € [0,1]. (A) e =0.1; (B) e = 0.2; (C) e = % (threshold value); (D)
€=0.5; (E)e=1.

Fig. 6.
condition (p(0.75),0.75). Note trajectory moves up and right. (b)= 0.6
and initial condition(p(0.75), 0.75). Note trajectory moves down and left.

(7]

consistent with the EXIT chart, shown in Figures 6(a) and
6(b). As opposed to the “pinching off” we observed for theg)
(3,6)-regular EXIT chart, as the error probability increases,
the variable node pivots downward with its rightmost pointlg]
fixed at(1,1). At the threshold value of = 3, the variable
node curve is tangent to the check node curvélal). As

the error probability continues to increase, the fixed paint [

(1,1) bifurcates into an unstable fixed point @t, 1) and a
LAS fixed point that moves toward the origin.
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