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Abstract— Multiple-Input Multiple-Output (MIMO) systems
are of significant interest due to their ability to increase the
capacity of wireless communications systems, but for these to
be useful they must also be practical for implementation in
VLSI circuits. A particularly difficult part of these systems
is the decoder, where the optimal maximum-likelihood (ML)
solution is desirable, but cannot be directly implemented due
to its exponential complexity.

The paper presents the first published 8×8 MIMO detection
engine with an integrated channel preprocessing unit, achieving
near-ML BER results at 57.6Mbps, using QPSK in an extended
HSDPA application. Other novelties include the high speed
sorting mechanism and power saving features.

I. PROBLEM BACKGROUND

Multiple-Input Multiple-Output (MIMO) systems utilise

spatial diversity between arrays of transmit and receive

antennae to achieve high data rates. An existing MIMO

device allows for data rates of 28.8Mbps [1] using a QPSK

constellation in a 4 × 4 configuration. This paper addresses

the need to achieve a higher data rate.

There are two methods by which this can be done. One is

to increase the constellation size [2], however [3] indicates

that in a real world cellular system it would be preferable to

first increase the antennae dimensionality.

Both methods increase the size of the decoding problem by

an exponential order. In particular, with n transmitters, each

transmitting from a constellation of size 2q, the complexity

of the problem becomes O (2qn). The MIMO receiver in [1]

has a search space size of 22×4 = 256 and is able to perform

a brute force search, but doubling the number of antennae

to 8 increases the search space to 65536, which is beyond

currently feasible receiver designs.

To overcome this, lattice decoding, especially the sphere

search variant, is regarded as a very promising candidate

for practical, high performance, near-optimal ML detection

algorithms, and applications to MIMO have been studied in

[4].

However, the algorithm and the associated preprocessing

is still computationally intensive, and optimisations need

to be found to further reduce its complexity. In [5], we

proposed and analysed a simplified algorithm, similar to the

“k-best” algorithm, with simulation results indicating that it

greatly improved feasibility for VLSI implementation. Here,
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we progress to a proof of concept device for an 8×8 MIMO

application.

II. ALGORITHM

Consider a system model for a MIMO channel with t

transmitters and r receivers:

y = Hs + n. (1)

Here, y is an r-vector with each element representing the

received despread sample from one antenna, s is the t-vector

of transmitted symbols, n is a length r noise vector, and H

is an r × t matrix of channel coefficients between antennae.

The MIMO detection problem is to solve (1) for s using

a channel estimate H̃, the received symbol estimates y, and

knowledge that the elements of s are from a finite set of

constellation points. The maximum-likelihood (ML) detector

[6] uses an exhaustive search to find

s̃ = arg min
s∈Λ

‖y − H̃s‖2, (2)

where Λ is the set of possible decisions over all users. This

paper uses the lattice decoder approach of expressing (2) as

s̃ = arg min
s∈Λ

(s − ŝ)
H

H̃HH̃ (s − ŝ) . (3)

Here, Λ is the lattice of possible decisions over all

transmitters, H̃H denotes the conjugate transpose of H̃, and

ŝ indicates where the received signal vector, y, lies within

the lattice of possible original transmissions. The ŝ is the

unconstrained ML estimate of s, given by a multiplication

by the pseudoinverse of H̃ :

ŝ = (H̃HH̃)−1H̃Hy. (4)

A lattice decoder reduces the search space complexity

via a Cholesky or QR decomposition, resulting in an upper

triangular U such that UHU = H̃HH̃, with the added

constraint that the diagonals of U are real and non-negative.

The upper triangular nature of U allows the optimisation

problem to be structured as a tree search, with each trans-

mitter representing one level of the tree, and the branches

representing a choice of one of the constellation points

available for each transmitter. Each leaf then represents the

entire collection of decisions, and has a cost that is the sum

of the cost contributions associated with each of the branches

taken to reach that leaf from the root of the tree.

Fig. 1 presents an example for a t = 4 antennae problem,

with binary decisions for each transmitter. The first decision

is represented by level 1, which corresponds to the last row

of U. Defining cost Ct+1 as 0, the cost for the node at level

t + 1 − n of the tree is
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Fig. 1. Example of cost allocations for tree search decisions. Note that
“Level 0” does not actually exist in the search, since the first decision is
represented by “Level 1”.
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with the costs increasing monotonically as the tree is tra-

versed.

On each level of the tree all of the children of the current

candidate nodes are evaluated, and the best k of these are

kept as candidate nodes for the next iteration. When the leaf

nodes are evaluated, the best k are selected and these can

be used to generate soft information about the decision for

each transmitter. In the proposed device, k = 16.

III. TOP LEVEL ARCHITECTURE

The target application is a High Speed Downlink Packet

Access (HSDPA) scenario with 8 antennae using QPSK.

With 15 orthogonal spreading codes in use, this gives a

required data rate of 3.6 × 106 symbols per second, or

57.6Mbps. The chosen clock speed of 122.88MHz implies

the need for three parallel processing engines, to achieve the

average throughput of one symbol every 32 clock cycles.

Additionally, to allow for fading channels, the channel may

be refreshed as often as every 2048 chips, which requires

the channel to be preprocessed. Since the preprocessing

hardware is shared with the search center generator, this

function needs to be performed as fast as possible. In this

0.13µm design, it is achieved within 3000 clock cycles.
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Fig. 2. Top level architecture, showing three parallel search engines
interfacing to preprocessor and output logic.

Fig. 2 shows an overview of the top level architecture

chosen. Channel information is received by the preprocessing

unit, where the channel pseudoinverse and decomposition is

calculated in preparation for the decoding operations. During

this process, incoming samples are held in a circular buffer

and released once they are required. Once the preprocessor

has finished, it is reused to perform the search center

calculations. That vector is submitted to a presearch unit,

with the results queued to the next available search engine

in preparation for processing. Once processed, the results are

reassembled into their original order, and output sequentially

to an external interface.

The numerical format used throughout the design is sign-

magnitude floating point. The main overhead cost, compared

to a fixed point system, is the need to continually rescale

values to a common exponent before any addition operation,

and then scale the result so that the mantissa is at least 1

and less than 2. However, a restricted floating point system

was found to produce better overall efficiency of hardware

use with a smaller bit width. Furthermore, it offers better

accuracy and numerical stability with smaller arithmetic units

[7], while the sign-magnitude format aids floating point

scaling and power saving optimisations.

IV. PREPROCESSING

The channel preprocessing functions of the algorithm in-

volve finding the QR decomposition, and the pseudoinverse,

of the channel matrix. This is a critical component that is

omitted from many published 4 × 4 publications such as

[8], and is even more challenging for an 8 × 8 system. Our

proposed preprocessing engine is formed by the interaction

of a number of smaller units, shown in Fig. 3, to perform

the functions of matrix multiplication, QR decomposition,

and search center calculation.
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Fig. 3. Architecture of preprocessing unit for a 8x8 MIMO channel.

A. Vector-Matrix Multiplication

The majority of operations involve multiplications be-

tween pairs of matrices, or between a vector and a matrix.

These are achieved by a complex multiplier array, using

floating point pipelined multipliers to achieve the majority

of matrix-vector calculations. Power savings are realised by

only activating the registers on various paths when the data

is predicted to be valid. Additionally, paths containing zero

values can be predicted by checking the most significant

non-sign bit on the inputs. If zero, then the result of the

multiplication can be predicted as zero and the multiplication

is not necessary.

B. QR Decomposition

The standard QR decomposition is very complex due to

its requirement for division and square root operations. This

is addressed in [9], and extended by our work in [7]. The key

concept is a “scaled and decoupled” QR decomposition that

separates the numerators and denominators to avoid these

difficult operations. For an m×n channel matrix, H, its QR

decomposition is

H = QR = ΦHK−1P, (6)

where R = K− 1

2 P and QH = ΦHK− 1

2 . The resultant R is

an m×n upper triangular matrix, Q is an m×m orthonormal



matrix (QQH = I), and such a transformation exists for any

matrix.

The matrices P and Φ are dimensioned the same as R

and Q respectively, and K is a real-valued n × m diagonal

matrix. To obtain R and Q from these results, some square

roots and divisions are necessary, but we will see that these

are easily addressed.

The architecture for calculating the QR decomposition

breaks the algorithm into three distinct segments, as outlined

in Alg. IV.1.

Algorithm IV.1 Scaled and Decoupled QR decomposition

For i = 1 to min(n, m) do {
For j = i+1 to n do {

Part 1 - Calculate Givens Rotation

Part 2 - Recalculate P(i, j + 1) to P(i, n)
- Recalculate P(j, j + 1) to P(j, n)

Part 3 - Recalculate Φ(i, 1) to Φ(i, n)
- Recalculate Φ(j, 1) to Φ(j, n)

}
}

In the following, our implementation of each of these parts

is discussed.

1) Givens Rotation Calculation: The “rotation calcula-

tor”, shown in Fig. 4, generates a Givens matrix, G, which

is an identity matrix apart from four entries, Gi,i, Gi,j ,

Gj,i and Gj,j . It also allows a new value of P(i, i) to

be directly obtained. This part mainly consists of a series

of multiplications by real numbers, and some addition and

scaling operations.
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Fig. 4. Rotation Calculator Unit for QR.

The basic flow of data can be seen in Fig. 5, showing

that there are several calculations that are dependent on each

other, plus a few that are independent. These independent

elements include the Givens rotation matrix, Gxx, and so

these may be calculated first to allow parts 2 and 3 to

proceed in parallel before this part has completed. The

sign-magnitude floating point format can be very efficiently

implemented, as the K and M outputs in Fig. 4 are known

to be positive, and the amount of rescaling required is very

limited.

Using the work timeline provided by Fig. 6, only four

work cycles will be needed, regardless of the size of the
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Fig. 5. Flow of data through part 1 of the QR decomposition algorithm.

decomposed matrix, and only four real number multipliers

are required.
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Fig. 6. Timeline of calculations for part 1 of the QR decomposition
algorithm.

2) Rotation of P: As seen in Fig. 7, part 2 is quite

straightforward, requiring four complex multiplications and

two additions per column, per iteration. With only four

parallel complex multipliers, only one work unit is required

for the calculation each column of P.
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Fig. 7. Architecture for recalculation of one column of P or Φ

3) Rotation of Φ: On each loop of the decomposition,

this part must multiply the existing Φ by the Givens matrix

G that was obtained from Part 1. The architecture is almost

identical to that of Part 3, except that m calculations are

needed for each iteration of the decomposition.

C. Search Center Calculation

While the channel decomposition only needs to be per-

formed once per channel update, the unconstrained ML

estimate, ŝ, needs to be calculated for every search operation,

as defined in (4). This is achieved by multiplying the

incoming sample by the channel pseudoinverse, which may

be expressed as :

ŝ = P−1Φy, (7)

where P−1 is calculated directly. While in principle an

inverse is calculated, in practice only half of the effort

is required because P is already in an upper triangular

form. Direct inversions are often avoided due to concerns



over numerical stability, however in [7] we demonstrated

that it is no different to the commonly recommended back-

substitution method.

D. Scalar Reciprocal and Reciprocal Square Root

While the scaled and decoupled method greatly reduces

the number of square roots and divisions required, it does

not completely eliminate them. In particular, to obtain R,

the calculation is

R = K− 1

2 P. (8)

The inversion and reciprocal square root operations are im-

plemented by simple application of the bisection algorithm.

The bisection algorithm assumes the known existence of a

solution between two points, a and b. On each iteration, a

midpoint c = a+b
2

is selected, and it is decided whether the

solution is between a and c, or b and c, and either a or b is

replaced with c as appropriate.

For the case of finding the inverse of a scalar x, for any

candidate point y this involves calculating :

cost = 1 − xy

For an appropriate a and b, costa would be positive and costb
would be negative. The midpoint, costc, would replace a if it

were positive, or replace b if it were negative. As the solution

converges to the correct answer, both costs would converge

to 0.

Similarly, finding the inverse square root of x, for any

candidate point y, involves calculating :

cost = 1 − xy2

Conveniently, the computational load is quite small when

applied to the binary domain. For the reciprocal square root

in a floating point system, the original value is xm2xe , so the

result will be of the form ym2b
xe

2
c. In a floating point system,

it is known that xm is between 1.00 . . . 002 and 1.11 . . . 112.

Therefore, ym will be between 0.10 . . . 002 and 1.00 . . . 002

for both the inverse and inverse square root operations.

The operation is executed by iterating once for each bit of

the result. The test case C is the progressive result with a 1
added to the left as a new least significant bit. If the cost of

C is positive, then the decision is kept, otherwise that bit is

set to zero and the previous decision is kept.

By examination of the operations involved, it can be seen

that only a series of shifts and additions are required. This

allows for the simple architectures shown in Fig. 8 and Fig.

9.
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E. Implementation

A bit-accurate software model of the preprocessor reveals

the effect of varying the manitissa bit size, and indicates (Fig.

10) that as little as 10 mantissa bits are necessary to obtain

near-optimal performance. The final design implements a

12-bit version with 20000 standard cells and 9216 bits of

memory.
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Fig. 10. Performance of preprocessor under various bit widths for an 8x8
MIMO channel.

V. SEARCH ENGINES AND PRESEARCH

The search engines are designed for expanding the 64

children of 16 candidate nodes and performing a sort, but

the 16 candidates do not exist until after the second level

of a quaternary tree. Hence, no sort is required and less

calculations are required to fully expand the nodes that are

present.

To exploit this, a presearch unit is implemented and

optimised to calculate the first two stages of the search in an

efficient manner. This is done as fast as the search center

estimates are made available, and so does not negatively

impact on the performance.

The search engines contain a three stage pipeline, which

iterates to execute the final six levels of the parallel tree

search. The content of these engines is illustrated in Fig. 11,

and implements a series of simple node cost calculations

in floating point format to evaluate (5) and expand each

successive level of the tree. Once these are calculated, a

sorter block is used to determine the best 16 of the 64

generated options.
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Fig. 11. Architecture of a single search engine.

By including the presearch unit, two iterations are removed

from the engines and this increases their throughput by 33%,

reducing the total number of engines required.

VI. SORTING

The most challenging aspect of the design is to build a

sorter that selects the best 16 of the 64 evaluated nodes in

one pipeline stage, containing 16 cycles at 122.88MHz. One

of the key features exploited in our solution is that the outputs

do not need to be fully sorted, as we only require the best

16 entries in any order. For this purpose, a Batcher sort [10],

optimised for this application, was chosen.

Fig. 12 illustrates how the sorting network is divided into

stages, in which a subset of numbers is fully sorted. The first

stage sorts pairs of inputs, the second stage sorts 22 inputs,

the third sorts 23, and so on. Within each stage, a series

of pairwise comparisons are made to gradually reorder the

elements in a set of substages.
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Fig. 12. 8 input sorting network configuration. The numbers indicate the
matching inputs and outputs of connecting stages for clarity.

Fig. 12 also identifies the inputs by numbers, correspond-

ing to an output of the previous substage. By tabulating these

numbers, a series of patterns can be observed, providing a

generalisation that allows a sorting system of any size to be

designed :

• For the first substage, on sorter element k and stage n,

the two inputs are numbered k and 2n − k − 1.

• For the second substage, the sorter elements are divided

into two halves. For elements k = 0 to 2n−2 − 1, the

inputs are numbered 2k and 2k + 2n−2. For elements

k = 2n−2 to 2n−1 − 1, the inputs are numbered 2n −
1 − 2k and 2n−1 − 1 − 2k.

• Each substage thereafter divides the outputs into two

halves, and then applies the second substage rule to

each half

When tabulated, it can be seen that certain patterns of con-

nections repeat. In particular, for each stage K > 3, the first

three substages are unique and the remaining substages are

the same as the corresponding final substages for the previous

stage. To sort the 64 inputs, only 13 types of configurations

are required to sort the numbers in 22 substages.

To reduce the number of substages to 14, we first note

that the final 3 substages are not needed because the set

does not need to be fully sorted. The T3/T0 substages are

recognised as a repeating combination and combined into

one unit, and the first three substages are precomputed as

the cost data is generated by the search engine. The resulting

sorter architecture is an array of 16 of the 2-node sorter pairs

shown in Fig. 13.
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Fig. 13. Optimised structure of the sorting elements. The 2-node elements
implement the majority of the stages, using multiplexers to switch the inputs,
and the 4-node unit implements the combined T3/T0 stage. The grey boxes
represent registers separating the stages.

To reduce power, duplicate registers are placed on the

outputs of the 2-node elements. If the next stage is a

T3/T0 stage, then only the registers connecting to the 4-node

element need to be clocked. This blocks logic transitions to

the multiplexers and 2-node elements, which will not be used

in the next stage. Otherwise, when the next stage is not the

combined T3/T0 stage, power is saved by blocking logic

transitions from entering the unused 4node element.

VII. SCALABILITY

The preprocessing architecture is easily scalable and is

quite suitable for even larger matrices, but will require a

longer execution time. Most of the additional effort occurs

from the need to perform more iterations to complete the

decomposition, with each iteration increasing only linearly

in complexity.

The remainder of the architecture is very modular, and so

can be resized as required. If higher throughput is required,

more engines may be added. If a higher constellation is

required, additional search elements may be necessary, but

the basic structure would remain unchanged.

VIII. RESULTS AND COMPARISON

A prototype device has been prepared and routed (Fig. 14)

for a 0.13µm technology, with a core size of approximately

12mm2. This establishes the feasibility of 8 × 8 MIMO

detection, with a unique integrated preprocessing unit that

is commonly omitted from simpler 4 × 4 designs. The

algorithmic performance of our proposal, presented in [11],

[5], indicates near-ML results.



Reference Proposed [8] [2] [1]

Preprocessor 20K Gates No No ML-APP
Antennae 8 × 8 4 × 4 4 × 4 4 × 4

List decoder Yes No Yes Yes
Constellation QPSK 16QAM 16QAM QPSK
Throughput, 1dB > 57.6Mbps+ � 50Mbps 106Mbps 28Mbps
Throughput, 5dB > 57.6Mbps+ < 50Mbps 106Mbps 28Mbps
Gates 500K 117K 97K 170K
Clock Speed 122MHz 51MHz 200MHz 122MHz

TABLE I

COMPARISON OF MIMO IMPLEMENTATION PROPOSALS

Table I compares the proposed design with existing 4× 4
MIMO implementations. However, it is difficult to achieve

a fair comparison since the 8 × 8 system contains more

levels in the tree, resulting in a more complex problem

with more stages of decoding operation. The advantage is

that, while a 4 × 4 may have identical search space and

raw throughput as the proposed design, the choice of higher

antennae dimensionality over higher constellation size is

likely to provide better performance in practical applications

[3].

Sphere based devices, such as [8], claim to have a lower

cell area, but the throughput at low signal-to-noise ratios

(SNRs) is significantly impaired and [8] does not provide soft

decisions. Low SNRs are typical of realistic cellular chan-

nels, so the k-best style of algorithm has a clear advantage

of having a constant throughput irrespective of SNR.

Ref [4] estimates that the complexity increases at best

in O(x3) with tree depth x, so if sphere decoder designs

such as [8] were scaled to match the same complexity and

throughput, the size would be more comparable. However,

as illustrated in [5], the key advantage of this algorithm is

the reduced number of calculations performed.

The soft output decoder in [2] claims the capability of

a very high throughput, but this is beyond the capabilities

of the HSDPA standard targeted here. While their design

is simplified through ordering based on SNR and channel

information, this does not appear to scale well to 8 × 8
systems. Without this ordering, our design and [2] both

require up to three times as many soft candidates, accounting

for much of the difference in area.

In [12] it is claimed that standard sphere detection provides

similar bit error rate and throughput with a lower silicon area.

However, it appears that this is referring to a 4 × 4 system

and it is not clear what particular operating point is targeted.

Our own experiments suggest that such claims are dependant

on particular configurations and, when extended to an 8× 8
system matching the performance of our proposed device,

these claims would not hold.

IX. CONCLUSION

This paper has presented a unique scalable device based

on a k-best algorithm, establishing the feasibility of decoding

data from an 8×8 MIMO system at 56Mbps for all SNRs. It

includes the crucial channel preprocessing functionality, 16

candidates for soft output data, and addresses the high speed

sorting challenge that is characteristic of this algorithm.
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Fig. 14. Plot of the final chip, indicating the relative sizes of memories
and core logic.
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