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ABSTRACT

It is common to need to estimate the frequency response of a system from observed input-
output data. In this paper we characterise, via integral constraints, the undermodelling
induced errors involved in solving this problem via parametric least squares methods. Our
approach is to exploit the Hilbert Space structure inherent in the least squares solution
in order to provide a geometric interpretation of the nature of frequency domain errors.
This allows an intuitive process to be applied in which for a given data collection method
and model structure, one identifies the sides of a right triangle, and then by noting the
hypotenuse to be the longest side, integral constraints on magnitude estimation error are
obtained. By also noting that the triangle sides both lie in a particular plane, integral
constraints on phase estimation error are derived. This geometric approach is in contrast
to earlier work in this area which has relied on algebraic manipulation.
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1 Introduction

A topic of recent interest in the system identification community has been that of examining
the performance of estimation algorithms when the underlying true system cannot be ex-
actly captured by the chosen model structure. This situation has been colloquially termed
‘undermodelling’, and when it exists it introduces a source of estimation error (called ‘bias
error’), the nature of which is not nearly so well understood as the so called ‘variance error’
that arises from the corrupting influence of measurement noise. Nevertheless, this source of
error is of considerable importance, particularly in the context of frequency response esti-
mation for subsequent use in robust control system design. The most widespread approach
to this problem has been to tailor the design of new estimation schemes towards the goal
of making both the bias and variance error quantifiable; see [21, 1, 16] for an overview of
these efforts. This paper takes a different approach by trying to gain some insight, via the
development of integral constraints, into the nature of undermodelling induced bias error
in existing classical least squares estimation schemes.

This problem has been tackled by other authors [19, 5, 6, 3, 4] for the particular case of
using ARX type model structures in combination with non-noisy measurements collected in
open loop. The methods used by those authors are algebraic. In [3, 4] Lagrange multiplier
techniques are used, whereas in [19, 5, 6] the authors complete squares with a term which
is zero since it is the gradient of the least squares cost function evaluated at the estimate.

In contrast, this paper shows how a geometric approach may be taken. To be more
specific, we show that a general principle is that the estimation error is orthogonal to a
particular subspace or linear variety living in a frequency domain space. This provides
two sides of a right triangle, and by noting that the longest side of such a triangle is the
hypotenuse, the integral constraints on magnitude estimation error are obtained. Although
this geometric principle has been heuristically stated, as we shall show it appears in more
rigorous but equally simple form as the Cauchy-Schwarz inequality.

The benefit of recognising the less formal interpretation is that it gives an intuitive
principle that can be easily transferred across different model structures and data collection
setups. All that needs to be done is to recognise what terms make up the sides of the
triangle, no algebraic calculation is required. In this paper we take advantage of this by
extending the results of [19, 5, 6, 3, 4] to closed loop data collection settings and to ‘basis
function’ type (Laguerre, Kautz etc. ) model structures.

For the particular case of ARX type model structures, in [19, 5] the case of terms in
numerator or denominator being fixed was considered, and in [3, 4] the integral constraint
analysis was extended to the case of quadratic constraints on the numerator or denominator
terms. Another insight arising from the geometric viewpoint is that it immediately becomes
obvious that the integral constraints hold regardless of the nature of constraints on the
numerator or denominator terms. Whether they are quadratic or something much more
complicated is irrelevant, all that matters is that if the denominator terms are constrained,
then all the numerator terms need to be free so as to form a subspace (and vice-versa if
numerator terms are constrained).

It is also possible to develop integral constraints on phase estimation error from a ge-
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ometric perspective. The same orthogonality condition that leads to recognising the sides
of a right triangle also provides the angle between two other sides of the triangle and a
characterisation of what plane both these sides live in. For the case of ARX type models
this provides a very direct way of providing the phase error constraint derived algebraically
in [19]. However, because the geometric method is so intuitive, one immediately sees an-
other phase error characterisation that was not presented in [19], and it is also trivial to
extend these phase error characterisations to other situations such as closed loop estima-
tion, and estimation with other model structures.

We will discuss all these issues in the following format. Firstly we will define the problem
assumptions, the notation, and the model structures we will be considering. This will
occupy section 2. In section 3 we will begin our discussion of how a geometric interpretation
may be arrived at by describing how the estimated frequeny response may be considered
as the solution to a norm minimisation problem in a certain Hilbert Space, for which a an
orthogonality condition applies to characterise the solution. The nature of this solution
depends on the model structure and the data collection mechanism. We treat the cases of
open and closed loop data collection, and ‘basis function’ and ARX type model structures in
turn. In each case we characterise both the gain and phase estimation error, and emphasise
how the results may be intuitively derived via a geometric picture; where appropriate we
document where the results have been previously derived by other authors using different
methods. The paper closes with a discussion of the shortcomings of the integral constraints
we derive here.

2 Problem Setting

In order to discuss the ideas mentioned in the introduction let us first fix the problem and
the notation. Suppose that frequency response estimates of a system are to be derived
on the basis of observing an N point input-output data set Zy = [{ux}, {yx}]- Suppose
further that the measurement conditions are such that this observed data set is generated
as follows:

yr = Gr(Q)ur + H(q)v. (1)

Here Gr(q) and H(q) are strictly stable SISO transfer functions in the forward shift oper-
ator ¢, {ux} is a known input sequence and {4} is a disturbance sequence which we elect
to describe as a zero mean i.i.d. stochastic process with E {v?} = 0% < co. The frequency
response of the true system Gr(e?*) is the quantity to be estimated from Zy.

There are non-parametric methods available for estimating Gr(e?*) [9, 10], but in
this paper we only consider parametric methods. These involve fitting a model G(q, 6),
parameterised by a vector § € R?, to the available data Zy and then taking G(e’*, §N)
as the estimate of Gp(e). The parameter vector estimate fy could be obtained in a

variety of ways [10, 22|, but again we focus on a specific case by looking at ‘Least Squares’
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estimation:

(1>

Gy 2 argmin {% T 52(9)} , (2)

0cRr k=0
ex(6) 2 yl — 9, 1(9), (3)
yl 2 F(q)y, (4)
Glio1(0) 2 F(@)Tk-1(9). (5)

Here F(q) is some user chosen strictly stable data pre-filter and g x—1(f) is some predictor
of yr given the past data Z,_; and a parameter vector . The choice of this prefilter has
been the subject of a large literature, we refer the reader to [10, 22] for excellent overviews.
If F and H are both stably invertible, then from (1),(4) we have

i = (F - H_l) yi + H'Grug + v

Provided the noise variance o2 has been scaled so that H(q)F(g) has a monic impulse
response this expresses y,’: in terms of past data and a white noise innovations so that the
mean square optimal predictor ﬂ,{l k_1 1S

371]:|k—1 = (F - H_l) yr + H ' Gruy,.
It therefore makes sense to define the predictor in (5) as
?j1{|k—1(9) = (F - H_l) ye + H'G(g, 0)ux (6)

so that the form of the predictor depends on the model structure G(g,6) and the filter
F(q) that is chosen. In this paper, two model structures are of interest to us, ARX models
and fixed denominator models, in which cases the forms of the predictors are as follows.

2.1 ARX Modelling

This is a very common model structure [10, 22] described as

B(q,6)
G(q,0) = 7
8= 44,9 @
where
A(g,0) = ang"+an1¢" ' +-Harg+1, (8)
B(q,0) = bmg™+ am-1¢" "+ -+ big + by,
aT = [anaan—la“'Jalabmabm—la'“)blabO]-

Now, because of the rational structure of G(g, ) in (7), calculation of fy given by (2)-(5)
and using the predictor (6) is a non-linear, non-convex optimization problem requiring
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some sort of numerical search technique which may arrive at local minima rather than the
global solution.
We can obviate this by choosing F(g) in (6) as

E(q)

) = g aig 0

where E(q) is Schur and is of the form
E(q)=eq +e 1+ +eqg+1.

This so called ‘observer polynomial’ is often set? to E(q) = 1. For a discussion of more
thoughtful choices, see [13]. In any event (6) becomes

~ E q) — A q, (9 B q, 0
) = (FL5500) ot 4 Bt (10
= ¢ 0 (11)
where ; ; ; ;
¢£: [yk—r Y1 Uk—m Ug ]
E(q)’" " E(q)’ E(g)" " E(q)
and 6 is re-defined to be
HT = [era"'aen-f-l)en —Qny.. s €1 _alabm)"'abO]

so that Oy satisfying (2) can be written in closed form

N
dy = (z m{) S drol (12
k=1 k=1

provided sufficient excitation exists for the indicated inverse to also exist. Now, of course,
we cannot choose F(q) as given in (9) since A(g, ) is unknown. Nevertheless, it motivates
the linear regressor form of the predictor (11) and since this leads to the simple expression
(12) for fy,the formulation (10)-(12) is very common in estimation of ARX type model
structures [13, 10]; it is commonly known as an ‘equation error’ type model structure. In
section 3.2 we will restrict ourselves, as other authors on the subject have done [19, 5, 6, 3,
4], to examining the effect of the choice of (10) as the predictor for ARX model estimation.

2Note that the normalised term in E(q) is set conformably to the one in A(g) as eg = ag = 1. Any
term (or set of terms) in A(g) can be normalised, but the conformal nature of the normalisation with E(q)
should be maintained in order to keep the size of the parameter vector § as small as possible.



2 Problem Setting 5

2.2 Fixed Denominator Modelling

In this structure we have

B(q,9)
A(q)

where A(q) is fixed according to some a-priori knowledge of the dynamics of Gr(gq). The
advantage of this model structure is that finite data statistical properties of fx can be
specified since the predictor ﬂ,{l _1(0) can be cast in the linear form (11) with the regression
vector ¢y containing no stochastic components. This linear form is achieved by motivating
the predictor §£|k_1(0) from (6) with the filter

G(qa 0) =

(13)

F(q)=H(g)™ (14)

to give
B(q,0

Thr(6) = 0 uf — o7 (15)

where
_ | T
¢11; - muk; @uka 3 A(q)uk )
9T = [bOa"'abp]’ pSm (16)

Now, because of the linearity of this model structure, we will not change the frequency
response estimate by linearly re-parameterising as

y:d)gﬁa ﬁ:M'ga

Vi = $p M = [Bo(q)ur, Bu(q)ur, -+, Bp(q)us]
where the transfer functions {By(q),-- -, B,(q)} are given by

1 q 9° —1
[BO(Q)a BI(Q)) 7Bp(Q)] A(q) ) A(q) ) ) A(q) M
and M is any non-singular matrix. The filters {Bx(q)} can then be thought of as user
chosen ‘basis functions’ for the expansion of Gr(q). In the sequel, when talking of fixed
denominator models we will use this {By(q), -, B,(g)} basis function notation since it is
the most general.

Fixed denominator models thought of in these terms have been studied for some time
now under the names of Laguerre models [25] and Kautz models [26]. More recently
Heuberger, Van den Hof and co-workers [23, 24] have considered general orthonormal
constructions of these basis functions from balanced realisations of user chosen dynamics.
Finally, in [15, 17] a unifying construction encompassing all these cases has been shown to

" no- (V) i ()

Z_é:n Z—fk

k=0
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where the set of user chosen poles {&o, 1, -+, &,} is selected according to prior information
about the dynamics of the system to be identified. The point is that these fixed denom-
inator models form a rich structure that has attracted enough interest that properties of
the estimation error in using them is pertinent.

3 Geometric Characterisations

Our method of examining the relationship between Gr(e’*) and G(e’*,fy) via integral
constraints is motivated by the work in [19, 5, 6, 3, 4]. The difference to that work is
that we develop our results using geometric principles rather than by the clever algebraic
constructions of the previous workers. We believe this adds extra insight and also allows
easy extension of the results to settings (such as closed loop and fixed denominator model
structures) that are not considered in [19, 5, 6, 3, 4].

In order to develop our geometric interpretation we embed the estimation problem in
a Hilbert space. Now this is a very old and by now well known idea when the embedding
space is a time domain signal space ¢, and the inner product is defined via expected values
of these signals - see, for example [28, 22, 2]. In this case, one is led to conclude that the
least-squares solution involves an innovations sequence that is orthogonal to a subspace of
{5 that is spanned by the observed data.

The key idea in this paper is not to embed in ¢, but rather to embed in the Hardy space
H, that various frequency responses live in. The consequence of this choice is that we can
then directly make statements about the nature of frequency response estimates instead of
indirectly inferring them from properties of the parameter estimates, as other authors have
done [19, 5, 6, 3, 4]. In essence, one simply notes that the frequency response estimation
error is orthogonal to the estimate itself, this gives two sides of a right triangle, and
identifying the third side (which is model structure and measurement set-up dependent)
gives the integral constraints.

To see how this embedding in H, is set up, we first assume that the excitation signal
{uy} is stationary in the sense introduced by Wiener [28] of possessing a limiting sample
autocorrelation function R, (7)

N

. 1
-y 3 E ) o

Ry(7)

which decays sufficiently quickly with increasing 7 that a spectral density ®,(w) given by

Bu(w)= S Ru(r)e, RH(T):% [ 2u@)e dw (18)

T=—00

also exists. In this case, under some further mild regularity conditions on {u} and {4},
the least squares estimate 6y given by (2) converges as follows [11, 2]

A a.s.
Oy — 60, as N — oo
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where

1= :
b, = atg min {]\}Enoo N kZ:% E {52(9)}} = arg min {R.(0,6)}. (19)
Now, the right hand side of this expression is the autocorrelation function for e4(6) eval-
uated at lag 7 = 0. Since by (18) this is also the zeroth coefficient of the Fourier series
representation of the spectral density ®.(w, ) we can use the idea in [27] and rewrite the
criterion (19) as
6, = arg min {/ @ (w,0) dw} : (20)
0cRP -
In turn, the spectral density ®.(w,f) depends on the model frequency response G(e’, ),
the true frequency response Gr(e’*), the input spectral density ®,(w) and the noise spectral
density |H(e’*)|?02. Finally, this dependence is a function of the model structure.
However, regardless of the model structure, ®.(w, ) can be expressed in terms of the
frequency responses of linear discrete time systems, and so we can embed the expression
(20) in a particular Hilbert Space (Hy(T), || - ||) of complex valued functions on the unit
circle T. This space is defined such that a function f is in (Hx(T), || - ||,) if the Fourier co-
efficients {c;} of f are zero for k < 0 (this corresponds to only considering causal systems)

and if || f||, < oo where the seminorm || - ||, is given by
2 1 /= oy |2
12 = - [ 17 x(w) dw (21)
T J—7
with x(w) a non-negative definite function ®. The geometric structure of (Ha(T), || - [ly)

then comes from the inner product that can be defined on the space:

(.90 = 5 [ He)gex(w) do. (22)
Now this is all very abstract, but the point is that by recognising this embedding, (20)
becomes an expression for f, as a norm minimisation problem in Hj,, the solution of which
is characterised by an orthogonality condition in terms of the above defined inner product;
the constraints on the estimation error then follow immediately. Just what x(w) is and
what is being minimised depends on the model structure, so to explain the geometric
interpretation further we have to be more specific about this structure.

3.1 Fixed Denominator Modelling

Suppose to begin with that we elect to use the fixed denominator model structure that
was detailed in section 3.1. Then assuming {u} is uncorrelated with {1} (so that closed

3If x(w) were positive definite, then || - ||, would be a true norm, but in the sequel x(w) will come from
a spectral density and since we want to allow for spectral densities that may be zero at some points, we
technically only have a seminorm. This pedantry is irrelevant anyway since the projection theorem, which
will be our major tool, holds in either case.
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loop collection of data is ruled out for the moment) we can use Lemma B.1 to calculate
D (w,0) as

B.(w,0) = |Gr(e) — G(e,6)[ |F(e")[ @u(w) + |[F(e)H ()] 02

and hence rewrite the minimisation criterion (20) as

0, = arg min { /
0cRr -

= arg min {/W ‘GT(eJ'w) — G(e, 6)‘2 ‘F(ejw)
0cRr -

Gr(e) - G(e,6)[ [F(e)[ @u(w) + | F(#)H(e)| o2 dw}
3,(w) dw} . (23)

However, if we use the embedding (21),(22) then we can also consider (23) as the norm
minimisation problem

6, = arg min {||Gr — G(9)|l, } (24)
0cRr

where x(w) = |F(e/*)|?®,(w). Furthermore, in the case of fixed denominator modelling,
this minimisation is over the subspace M of (H2(T),| - ||,) spanned by the basis func-
tions {Bo(e?*), -, By(e’)}, and so the classical Projection Theorem can be applied to
characterise the asymptotic estimate G(e’“,6,) as the unique element of M satisfying the

orthogonality condition?
(Gr — G(6,),G(6s)), = 0. (25)

This immediately gives the following result characterising the fact that undermodelling
induced bias error is such that the gain of the system averaged over all frequencies will be
underestimated.

Theorem 1.

.

with equality if and only if Gp(e?*) = G(e?*,6,) for almost all w.

(e, 6.)[ | F(e)

‘ 2

By (w)dw < /_7; Go(e)]” [F ()] @u(w) dw

Proof. The proof is a trivial consequence of the Cauchy-Schwarz inequality. From (25)

(Gr,G(6.)), = IG(B.)II, (26)
But by the Cauchy-Schwarz inequality (Gr, G(0.)), < ||Grll«||G(6s)||. with equality if and
only if Gr = G(6,). mE

The geometric interpretation is that (25) tells us that G — G(6,) and G(6,) are adjacent
orthogonal sides of a right triangle with hypotenuse G7. The fact that the hypotenuse is
the longest side in a right triangle then gives ||Gr||, > ||G(64)||. which is Theorem 1.

We can extract more information from the orthogonality condition (25). So far we have
only used it as far as it characterises the length of the sides of a triangle, but we note from
(26) that it also implies that Gr and G(6,) lie in the same plane since even though both
these elements are complex valued quantities, the angle between them is purely real. This
leads to integral characterisations of the phase response estimation error.

“Here and in the sequel the subscript u is used as shorthand notation for x(w) = |F(e’*)[?®,(w)
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Corollary 1.

/ " 1G(6.)Gr| |F|2®, cos(4G(8,) — £Gr)dw = / TGO IFR R dw,  (27)
/ " IF2|G(6,)Gr| ®. sin(£G(8,) — £Gr)dw = 0. (28)
Proof. Take the real and imaginary parts of both sides of (26). [

These two expressions tell us two things about phase errors. Firstly, (27) tells us that
gain errors and phase errors must go hand in hand. That is, if there is a magnitude
estimation error such that |Gr| exceeds |G(6,)| in some frequency region (from Theorem 1
we know this must happen unless G happens to be in the model set), then this forces a
compensatory non-zero phase error in this or some other region. Vice-versa, if there is a
non-zero phase error in some region, then the product |G(6,)||Gr| must exceed |G(6,)|? in
some region, and hence the system gain will be underestimated there.

Secondly, (28) tells us that over-estimations of phase in one region, must be balanced
by underestimations of phase in another, and that this phenomenon is proportional to the
gains and spectral densities of the quantities involved; a phase error in a region where
|F|?|G(6+)Gr|®, is large requires more compensation by further phase errors than does an
error where |F|?|G(6,)Gr|®, is small.

3.2 ARX Modelling

For the case of ARX modelling the story is similar to the foregoing. In this section we
re-derive most of the results in [19, 5, 3, 4]. We believe the re-derivation is of interest
because it shows an alternative and perhaps simpler method of obtaining the results, while
at the same time introducing an intuitive geometrical interpretation of the problem.

To begin, we note that for equation error type ARX model structures the asymptotic
estimate still satisfies (20) but since the predictor is now of the form given in (10) we have

ex(0) = yl = Tua(6)
- - (B0 B0y

= E E
A6 B(6
= SE) ui — ](E)u{ :
Furthermore, {y;} is generated according to (1) as
A(6 FHA(6
ex(8) = % [Gr — G(0)]ul + %yk.

So again, assuming for the moment that the data is collected in open loop so that {ui}
and {1/} are uncorrelated, Lemma B.1 and (20) lead us to

2

A(O)F
E

FHA(8)

6, = arg min{/7r |Gr — G(8) Z

0cRP -

@ﬁ‘

2 o’ dw} : (29)
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In the noise free case this becomes

2
6, = argmin {/ |Gr — G(0)| AOF @udw},
9cRr - E
~ |GrA(8) B()|
= arg min / rA(6) _ B(6) |F?®, dw ¢, (30)
dcRr -7 E E

2

= arg min HGTA(H) _B(G)
IR E E

} . x=|F®,. (31)
X

As Mullis and Roberts point out [14], in the context of system realisation theory, (30) with
|F|?®, = 1 has been suggested since the early work of Kalman as a means of tractably
approximating the solution to the non-convex problem

arg min {/7r |Gr(e?) — G(e,0)? dw} .
6cRr -

The following analysis of the nature of solutions to (30) is therefore also of relevance in
this realisation theory context in addition to our motivating system identification one.

Now, at first glance (31),(30) would seem to have the trivial solution A(6) = B(6) = 0.
However, this is not allowed due to the normalisation specified in (8) that ap = 1. In this
case, GrA(0)/FE is a linear variety in Ho(T) and B(A)/E is a closed subspace, with 6,
chosen to minimise the distance between them.

A projection theorem (Lemma A.1 which is a slight generalisation from the classical
case of points and subspaces to linear varieties and subspaces) again holds stating that
the error must be orthogonal to both the variety and the subspace. This leads again
to a geometrical interpretation shown in figure 1 and explained in the proof of the next
Theorem?.

What is of interest, and was first proved in [5] using a clever algebraic argument invented
by Salgado [19] and then extended in [3, 4] using Lagrange multiplier techniques is that
whether this normalisation occurs in the numerator or denominator affects whether the
average (over frequency) gain is over or under-estimated.

Previously, this result may have seemed surprising, but with the geometric approach
presented here the result becomes intuitively obvious since the choice of normalisation
affects whether A(6)/FE (resp. B(#)/E) parameterises a linear variety or a subspace, which
in turn affects whether |G|, (resp. ||G(0,)|.) represents the length of the hypotenuse or
the length of one of the orthogonal sides in a right triangle.

Theorem 2. If there are terms in A(f) fized, but not in B(6) then

m iw A(e?,6,) A(e?,8,)
[ e el | g “B(o0)

2

|F|*®,(w) dw.
(32)

2
|F|?®,(w)dw <

—_T

GT(ej“’)

‘ 2

SIn figure 1 and in Theorem 2 we have assumed the normalisation to be in the ag term of A(g). That
is, agp = 1. Of course, normalisation in any term, or set of terms is possible and will lead to the same
conclusion in Theorem 2 since all that matters is orthogonality between a subspace and any line.
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If terms in B(6) are fized, but not in A(6) then the inequality goes the other way. Equality
occurs if and only if Gr(e’*) = G(e'*,6,) for almost all w.

Proof. The proof is an elementary application of an extended version of the Projection
Theorem (Lemma A.1) and the Cauchy-Schwarz inequality. Specifically, if we fix terms
in A(f) then A(A)Gr/E is a linear variety in Hy(T) and B(A)/E is a closed subspace in
H,(T). A trivial extension of the classical Projection Theorem (see Lemma A.1) gives that
the line of minimum length connecting a line and a plane is perpendicular to both, and in
particular, perpendicular to the plane:

(A(0,)G(6,), A(6,)G(6x) — A(0.)GT), = 0. (33)

So geometrically® A(6,)G(6,) and A(6,)G(6,) — A(6,)Gr form orthogonal sides of a right
triangle with A(6,)Gr as the hypotenuse - see figure 1. Consequently we must have
|A(6) GO |l < ||A(6x)Gr|lu. More formally, (33) and the Cauchy-Schwarz inequality
give:

1A GBI, = (A(B)G(8), A(B2)Gr), < [ AEB)GE), NAE)Gll,  (34)

u

with equality on the right if and only if Gr(e’) = G(e?“,6,) for almost all w. If terms
in B(#) are fixed, then A(6)Gr becomes a subspace and B(f) a variety so that instead of
(33) we get

(A(0,)Gr, A(0,)G(6,) — A(6,)Gr), =0 (35)

to give analogously to (34)
1A(8,)Grll, = (A(6.)G(8,), A(6:)Gr), < | AB)G B, A6 G, -

o

Notice that in Theorem 2, we’ve only used the orthogonal to subspace property, but as
mentioned in the proof of Theorem 2 and as shown in figure 1 there is also an orthogonal to
linear variety property we haven’t used. Unfortunately, it does not seem to be useful. For
example, in the case of normalisation in the denominator of the form ag = 1, recognising
the hypotenuse to be the longest side of the triangle in figure 1 gives the integral constraints

T A N 2 T F2
[ 16 -7 2 pra,aw < [ 6 - a@ce)r | K] FPe,
and
x A6 x F 2
/ 1A®8,) — 17 |Gz Al6.) \F|2<I>udw§/ Gr — A(8,)G(6,)) | [P, do.

6Note that, strictly speaking, in the proof of Theorem 2 and in the sequel when we consider ARX
models in closed loop settings, A(6,) should be replaced by A(6,)/E, but we have not done so since if we
did, it would compromise readability



3 Geometric Characterisations 12

B(6,) = A(e*)G/(Q_*)\ I Gr — A(8,)G(8,)

Figure 1: Geometric Interpretation for ARX Estimation: The simple case of the restriction
on the denominator terms being a normalisation of one (or more) of the denominator co-
efficients (ag = 1 is shown).

It seems difficult to draw any useful conclusions from these constraints on how the frequency
response of the estimated model will relate to the frequency response of the true system.
The only point we can really make is that the expressions extend Theorem 2 slightly by
showing that not only does it matter whether we normalise in numerator or denominator,
it also matters which particular term (or group of terms) in the numerator or denominator
we choose to normalise, although the nature of this latter dependence is unclear.

In [3, 4] the authors extend these integral constraint type error formulae for ARX model
structures to cases with various non-linear constraints on the normalisation of the numera-
tor and denominator terms. They use Lagrange multiplier techniques, but a generalisation
of the simplest non-linear constraint case they consider can also be obtained using our
geometric principles.

Corollary 2. Theorem 2 holds under any constraints on the numerator or denominator.
Specifically, if all the terms are free in B(0) and there is any constraint on those in A(6)
then (34) applies. If all the terms in A(f) are free and there is any constraint on those
in B(6) then the inequality in (84) flips. Equality in (34) occurs if and only if Gr(e’”) =
G(e?*,8,) for almost all w.

Proof. This is not so much a corollary to Theorem 2, as a result with identical proof.
The reader will notice that in the proof of Theorem 2, all that mattered was that given any
point, no matter what manifold it might be constrained to lie on, the minimum distance
line from this point to a subspace is characterised by it’s orthogonality to the subspace.
Once this is recognised, the proof is immediate. See figure 2 for a visual proof. r
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- \
“ Set of A(0)Gr that |
1 satisfy whatever non-linear |
I constraints are imposed /

A(0,)Gr — A(6,)G(6,) R on A(6) //

Figure 2: Geometric Interpretation for ARX Estimation: The case of arbitrary non-linear
constraints on the denominator terms.

Although this corollary holds for any arbitrary non-linear constraint, it may be very diffi-
cult to solve (2) and hence find the estimate Gy for such a constraint. In [3, 4] the solution
to (2) under convex quadratic constraints is derived, and for this special case the preced-
ing corollary is derived algebraically. Also in [3, 4] constraints that are coupled between
numerator and denominator terms are considered, and it is shown that in some of these
cases equality in (32) eventuates. It is not apparent how these latter results can be proven
using the geometric ideas of this paper, the algebraic tools of [3, 4] seem to be the only
appropriate ones.

As per the previous section, up to this point we have only used geometric properties
about the length of certain sides in a triangle in order to gain information about errors in
estimating the magnitude frequency response. Insight into errors in estimating the phase
frequency response can be obtained by noting that the orthogonality condition (33) tells
us that the true and estimated response both lie in a certain plane, since the inner product
measurement of the angle between them is purely real.

Corollary 3. If all the terms in B(0) are free, and there is any constraint on those in
A(0) then

2 2

/_ % |F[2®, |G(6,)Gr| cos(£G(6,) — £Gr) dw = /_7; % |F[*®. |G (0,)]" dw,
(36)
/_W ‘% |F[*®, |G(6,)Gr|sin(<G(6,) — £Gr) dw = 0. (37)
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If all the terms in A(Q) are free and there is any constraint on those in B(6) then (36)
becomes

[

and (87) is unchanged.

2 2
|F[2®.,|G(6,)Gr| cos(£G(8,)— £Gr) dw = / |F[2®, |Gr|* dw (38)

E

W‘M

Proof. From Theorem 2, if all the terms in B(f) are free, then (31) is a norm minimisation
problem over the subspace B(f) and so the orthogonality condition (33) holds which can
be written

(A(6.)G(6.), A(6.)Gr), = | A(B)G (6., -

u

Taking real and imaginary parts of both sides then gives (36) and (37). If terms in A(6)
are free, then the orthogonality condition (35) applies, and taking real and imaginary parts
of both sides of this gives (38) and (37). EEE

The expression (36) was obtained via algebraic manipulations in [19] where those authors
concluded that since the sign of cos(a) is insensitive to the sign of the angle o then the
resultant frequency response error would be ‘insensitive to the sign of phase errors’. The
new expression (37) shows that phase errors are not quite so benign. Any positive phase
error must be balanced by a negative phase error. The other conclusions we can make
about phase and magnitude errors not being independent are the same as those made
in [19] and in the discussion of Corollary 1.

All the analysis in this section has presumed, as previous authors [19, 5, 3, 4] have
done, that no measurement noise is present. When measurement noise does exist we have

that 6, satisfies
2
} . (39)

The complicated form of (39) makes it difficult for us to say anything about the asymptotic
frequency distribution of estimation errors beyond the qualitative analysis made in [27]
where (among other things) it was noted that the presence of the measurement noise term
in (39) adds a bias to the estimation result. So called ‘pseudo-linear’ regression methods [7]
and AR expansions of H(q) [20] are available to counter this problem, but we will not
detail them here.

Regalia [18] has noted that if one knows what H(q) is, then a quadratic constraint can
be placed on the terms in A(q,#) so that the last term in (39) is independent of 6, hence
avoiding bias problems due to noise. For example, with |HF/E| = 1 we have

2

FHA(f)
E

2

+ o,

6, = arg min {H(GT - G(g))%

6eRr

u

o

2 n
=|AO)|I> =D _ ai
E kz:% k
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so that solution of (29) subject to the constraint 37_, a2 = 1 will give a result unbiased
by measurement noise. More detailed information about the nature of solutions to (29),
such as conditions under which G(6,) is stable, and Hankle norm characterisations of the
estimation error, may be found in [18] where again an algebraic approach to the analysis
is undertaken.

3.3 Closed Loop Estimation

The analysis so far has been for the case of data collected in open loop. Let us now apply
our geometric methods to the closed loop case. The provision of integral constraint type
characterisations of bias error for this case does not seem to have been addressed in the
literature so far.

The assumed measurement set up is as shown in figure 3. Here {r;} is a quasi-stationary
reference input uncorrelated with the measurement noise {vx} and K(q) is a controller.
We assume that {y;}, the noise corrupted measurements of the true system output {z}
are used both for feedback and identification. We relax the requirement that Gr(q) be
stable. Now, defining S(g) and T'(¢q) as the usual sensitivity and complementary sensitivity
functions we have

ve = S(QH(Q)v +T(g)rs,
up, = S(q)K(q)(rx — H(q)vx)

so that for fixed denominator modelling we have a prediction error given by
ex(0) = (T — G(0)SK)Fry + (1 + G(0)K)SFHuy,, (40)

where F(q) is the usual data prefilter discussed in previous sections. Therefore, since {r;}
and {vy} are uncorrelated, then provided that the closed loop system is strictly stable we
can use Lemma B.1 and (20) to characterise the asymptotic estimate 6, as the one solving
the norm minimisation problem’

6. = arg min {IT - GO)SK|2 + (1 + GOK)S|>}. (41)

Therefore, as is well known (see for example [8, 22]) with no noise 6, is such that it tries to
match the estimated closed loop response to the true closed loop response and if there is no
reference signal but o2 > 0 then 6, is such that G(6,) tries to match —K ~'(e’*). However,
using the same geometric argument as in Theorem 1 we can immediately progress from
these qualitative statements to the following more quantitative ones

Theorem 3. For fized denominator modelling, ®, # 0 and o2 =0

RLColk

—T

2

A p(epa,w) v < [ () PIFE)Pe () do

Gr(el*)

"We use the style of notation that we’ve used before; a subscript r is short for y = |F|>®, and a
subscript v is short for x = |FH|?02.
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LI K(q) o Gr(q) *

@}— Hg) —

Figure 3: Assumed Measurement setup for closed loop identification

Yk

with equality occuring if and only if Gr(e’) = G(e?*, 6,) for almost all w. For ®, =0 and
02 >0

[ 1)

-7

G(e*,6,)|?

Gr(e) (F)H() dw < [ 1 =T()P|F()H ()] dw

Proof. Follows precisely as per Theorem 1 on recognising that when o2 = 0,8, # 0 the
solution of the norm minimisation problem satisfies

(G(0.)SK,G(6,)SK —T), =0 (42)

and when o2 > 0,8, = 0 the solution of the norm minimisation problem satisfies
(G(0.)SK,G(6,)SK + S), =0. (43)
i

So, as for the open loop case, with no noise the system gain tends to be underestimated.
In the case of no reference signal, but with measurement noise present (41) tells us that
we will tend to estimate negative system gains and Theorem 3 goes further by telling us
that the magnitude of these gains will be limited very much at low frequencies, but not so
much at high frequencies. The implication of this is that we can expect G(6,) to have a
more high pass nature when measurement noise exists than when it doesn’t.

Insight into the phase estimation error can also be provided using the same tools we
have employed previously.

Corollary 4. For fized denominator modelling, ®, # 0 and 02 =0

/” () ()

(€)@ (w) dw,

(W) cos(£G(8,) — £Gr) dw = /_ z

( Bl

[

|F[2®, (w) sin(£G(6,) — £Gz) dw = 0
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and for ®, =0 and 02 > 0

/ " IKG(8,)||SH|? cos(«<KG(8,)) dw = — / " KG(6,)|SH|? dw,

[ IKG@.)|ISHP sin(<KG(6,)) dw = 0.

Proof. Simply take real and imaginary parts of both sides of (42) and (43). EEE

For the case of no measurement noise, the interpretation of these integral constraints on
phase estimation error is much the same as for the open loop case; see the discussion
following Corollary 1. However in the opposite situation where there is only measurement
noise and no reference excitation, the constraints show that the estimate has essentially
nothing to do with the true system response - on average the phase of the estimate is the
opposite of that of the controller. The only contribution of the true plant is the effect it
has on the sensitivity function S that weights the integral phase constraint. Using this
last extreme case, the suggestion is that when we have both excitation and measurement
noise, we can expect the plant phase estimate to be biased away from its true value in a
manner that is proportional to the phase compensation characteristics of the controller.
For ARX modelling, following the discussion in section 3.2 the predictor is given by

ex(f) = yf: - §1f|k—1
A B A B
_ (GTE _ E) SKFry + (E + KE) SFu,

so that assuming {r;} and {v}} to be uncorrelated allows us to conclude that 6, solves the
norm minimisation problem
2
} . (44)

0, = arg min {H (GTé — E) SK

2 A B
T L K=
0 EF FE T+H<E+ )S

E

Following the same geometric ideas as used in the proof of Theorem 2 immediately gives
the following quantitative result on the distribution of estimation errors.

Theorem 4. If there are terms in A() constrained, but not in B() then for ®, # 0 but
02=0

with equality occuring if and only if Gr(e’*) = G(e’“,8,) for almost all w. For ®, = 0,
02 >0
/7r G(ejw’ 9*)

Gr(ev)
If terms in B(6) are constrained, but not in A(6), then the inequalities go the other way.
The result holds regardless of the nature of the constraints imposed on A(6) or B(6).

2

ol ) () F(e) P (w)dw < [ 450

GT(ej‘”)

ejw

2| Ae?, 6,)
E(eiv)

2

A, 6)H(c) "

E(eiv)

A6, 6. H(e*)
B(e®)

2 2
() dw < [ 1=T(e)

T (e?)F(e*)]*®,(w) dw
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Proof. Follows precisely as per Theorem 2 on recognising that when terms in A(f) are
constrained and o2 = 0,8, # 0 then by Lemma A.1 with xy = [SKF|?®, the solution of
the norm minimisation problem satisfies

(A(6.)G(6y), A(6,)G(6,) — A(64)Gr), = 0 (45)

so that ||A(6.)G(0.) |, < I|A(6,)Grl|l, with equality if and only if Gr(e?*) = G(e?“,6,)
for almost all w. When o2 > 0,8, = 0 then with y = |SH|?02 the solution of the norm
minimisation problem satisfies

(KB(8.), KB(6.) + A(8.), = 0 (46)

so that ||KB(6,)|lx < ||A(6x)|lx- If terms in B(#) are constrained, but not in A(6), then
B(6) becomes the subspace that the error must be orthogonal to, and so with o2 = 0,
®, # 0 and x = [SKF|*®, we have

<A(0*)GTa A(G*)G(H*) - A(H*)GT>X =0 (47)

instead of (45), which immediately leads to || A(6:)G(6)|lx > ||A(6+)Gr|ly. With o2 # 0,
®, = 0 and x = |SH|*0? we have

(A(6,), KB(6.) + A(6,)), = 0 (48)
instead of (46) which gives ||KB(6.)|x > || A(6x)|lx- o4O

Therefore, if 02 = 0, then as for the open loop case, the system gain is on average under or
overestimated according to whether we constrain terms in the denominator or numerator.
If 02 # 0, but ®, = 0 then as for the fixed denominator case, the closed loop response T
generically having a low pass nature will force G(6,) to have a more high pass nature in
the presence of measurement noise.

Finally, as per the previous discussions, we can easily derive a characterisation of the
phase error in our estimation procedure.

Corollary 5. If there are terms in A(0) constrained, but not in B(8) then for ®, # 0 but

02=0
/_7; Géi) ‘A(H*E)TF‘ P, (w) cos(£G(6,) — £Gr) dw:/:; Géi*) A(egTF 3, (w) dw
(49)
™ (6,)| | AT’
= |G(6,)| | A(6,)TF ,
/_,r Gr ‘ B ®, (w) sin(<G(6y) — £Gr) dw = 0. (50)
For ®, =0, 62> 0
[ st 2DE wserconan - [ ke st A2 a.
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and
2

@ sin(<KG(6,)) dw = 0. (52)

JRLCECAIIER

If terms in B(f) are constrained, but not in A(6), then (50) and (52) remain unchanged,
but (49) becomes

L.

and (51) becomes

2

. (w)cos(£G(0,) — £G7) dw = /

—T

Ky

G(6,)
Gr

E

‘A(G*)TF

2

cos(«KG(8,)) dw = /_ : 152

2

A(0,)H
Al6.)H do.

E

A(6)H

N 2
| 1KG@.)Is] =

These result hold regardless of the nature of the constraints imposed on A(4) or B(6).
Proof. Take the real and imaginary parts of both sides of (45),(46),(47) and (48). 0O

The interpretation of these results is that same as that for Corollary 4.

4 Conclusion

The aim of this paper was to show that when using least squares methods, an undermod-
elling induced frequency domain estimation error can be easily and intuitively characterised
using geometric principles. This geometric approach is a very old technique when time do-
main ‘signal space’ errors are to be characterised. The application of the same idea to
a frequency domain setting is therefore a natural extension of existing practice. To the
authors knowledge the extension appears to be new, at least in the contexts described in
this paper.

Unfortunately, the results arising from this geometric approach, although we believe
them to be interesting, are not of a very fine structure. They only quantify average errors
in estimation, and as such only act as a general guide to the expected performance of a
least squares approach. What is really required for say, robust control system design, is
precise quantification of frequency domain errors rather then qualitative indicators of the
nature of errors. Many workers are currently addressing this problem, but at the time of
writing it still appears to be open.
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Appendix A Generalised Projection Theorem

Theorem A.1. Minimum Distance from Subspace to Linear Variety Let H be a Hilbert
Space and My, M, be closed subspaces of H. Now take z € H and consider the linear variety
V = z+ M,. If we seek to minimise ||x —y|| where x € My, y € V', then the solutions x,yo
have the following properties:

Zg 1S unique,
Yo 18 uNLque,
To—y L M,
o — Yo 1 Mg.
Proof. Take y € V fixed. Then by the classical Projection Theorem [12] ||z — y|| has

unique minimiser zo € M such that zo —y L M;. This is true Vy € V so (A.55) is proved.
Now, suppose the contrary to (A.56). That is, assume Jv € V', v — z # 0 such that

(mg—yo,v—z):6||v—z||2 ;6 >0
Then
lzo —yo — 6(v — 2)[I> = llzo — woll> — (zo — w0, 6(v — 2)) —

(6(v = 2),20 — yo) + [6]*[|lv — 2|I?
= llzo — yoll* = [8]*[lv — 2[I* < llzo — %olI®

and so (A.56) is proved. Finally, Vv € V orthogonality of zo — yo and M, gives:
lzo —vlI* = llzo — yo + 3o — v|I”
= [lzo — yoll* + llyo — vlI?

s0 ||zo — v|| > ||zo — yo||* unless v = yo to give (A.54). oD
Appendix B Manipulation of Spectral Densities

The condition (17) on {u} has become colloquially known as quasistationarity [10] and
the limiting operation on the right hand side of (17) has been given the symbol E {usus. }.
Using this terminology and notation we can say something about the quasi-stationarity and
hence spectral density of signals passing though linear systems.

Lemma B.1. Let {ux} and {yx} be quasi-stationary signals with spectrums ®,(w) and
®, (w) respectively, and let G(q) and H(q) be strictly stable transfer functions. Let {2} be
generated according to:

z, = G(@)yr + H(q)us.

Then {2z} is quasi-stationary and

$.(w) = |G(e™)] @, (w) + | H(E)| $u(w) + 2Re {H (@) G () B, (w) }
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Proof. {z} is quasi-stationary by Theorem 2.2 in [10]. Therefore ®,(w) exists and is
given by:

i R,(T)e™7%T

but . N
2k = Z InlYk—n + Z hmuk—m
n=0 m=0
and )
RZ(T) =E {Zkzk—‘r}
Therefore
RZ(T) = { (Z InYk—n T Z hmuk m) (Z 9eYk—r—t + Z hi”k—T—i) }
=0 i=0
= gngeRy(TJrE— n)+ Y ) gahiRyu(T + 1 —n)
ZthggRyu (T4+L—m +ZZh hiR,(T +1i—m)
Now
IngeRy(T + £ —n)e 7T = Gne " gt R (T + £ — n)e I
4 Yy
T=—00n=0{=0 T=—00 n=0 {=0
= Z gne —jwn deeawf E R (T4+£—n)e —jw(r+L—n)
= ‘G e ‘ )| Py(w)
Similarly
3 3 huhiulr +i = m)e T = [H(E)| Bu(v)
T=—00 m=0 =0
Also

[ oIEENe BN <]

D0 DY gahiRyu(T +i—n)e T = 37 3TN gne e Ryy (1 + i — n)e T
=00 1=0

n=0i= T=00 n=0 i=0
= G(e/*)H(e7) Byu(w)
Z Z deh Ryu T _I_ g m)e jwt = Z Z Z hme_jwmgeejweRyu(T + e _ m)e_jw(T+£_m)
T=00 m=0 {=0 T=00 m—=0 f=0
= G(e)H(e)®,,(w).
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