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Abstract— A recent frequency-domain, subspace-based al-
gorithm is used in the identification of two power transform-
ers. The results indicate that the subspace-based identifica-
tion algorithms can be used without modification even when
the dynamic range of frequency response data is large.
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I. INTRODUCTION

Frequency response methods are often used in practice
to obtain a nonparametric model of a linear system. This
identification may be performed without significant a priori
knowledge of the plant. Further, if the excitation of the
system is well-designed, e.g., periodic input or stepped sine,
each transfer function measurement, compiled from a large
number of time-domain measurements, is of high quality.
Also, data obtained from different experiments can easily
be combined in the frequency domain.

The problem of fitting a real-rational model to a given
frequency response data set has been addressed by many
authors [14], [13], [15], [8]. In the classical approach, a
system is modeled as a fraction of two real coefficient poly-
nomials and a nonlinear least-squares fit to data is sought.
This nonlinear parametric optimization problem is solved
by iterative, numerical search. Recently however, some
noniterative, frequency-domain, subspace-based identifica-
tion algorithms which deliver state-space models without
any parametric optimization have appeared in the litera-
ture [7], [11]. The subspace-based algorithms have been
successfuly used in the identification of high-order flexible
structures [7], [11].

In this paper, the objective is to illustrate the properties
of the recent frequency-domain, subspace-based identifica-
tion algorithms in a case study where the dynamic range of
frequency response data is large. A major motivation for
the case study in the present work is the challenge posed
by power transformers. High frequency modelling is essen-
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tial in the design of power transformers to study impulse
voltage and switching surge distribution, winding integrity
and insulation diagnosis and most often high fidelity mod-
els in a bandwidth up to 10 MHz are required for condition
monitoring purposes. The study of a high frequency part
of the spectra is necessary due to the resulting stray ca-
pacitances shunting the series inductances and dominating
the response. Accurate parameter identification of trans-
formers may lead to economical design of transformer in-
sulation against failure due to ferro-resonance and through
fault generated stresses.

Dick and Even [3] proposed the frequency response anal-
ysis method for the detection of winding movement in large
power transformers. In [3], as a practical maintanence
tool, certain advantages of frequency domain approach over
the low voltage impulse method [6] are reported. The re-
search using the transfer function method to date has been
mainly limited to interpreting faults by detecting changes
in successive frequency response tests. However, this ap-
proach fell short in explaining the changes in relation to a
suitably developed mathematical model. In [5] and other
works, transformer frequency response is divided into low,
medium, and high frequency ranges and a second order
model fit to data is sought. In [5], the nonlinear least-
squares method is applied to obtain an appropriate trans-
fer function to model the frequency response of a particular
transformer from 50 Hz to 1MHz. The models obtained by
this approach poorly fit data and in particular are not capa-
ble of modelling high frequency dynamics of a transformer.

The current paper focuses on mathematical models of
transformers rather than their equivalent circuits. Our
view is that once an accurate analytic model of the trans-
former under consideration is available, it is possible to
derive a transformer equivalent circuit by a suitable trans-
formation if necessary. This subject is currently under in-
vestigation. As well, our case study indicates that trans-
former dynamics varies from one transformer to another
which makes it difficult to derive a transformer equivalent
circuit valid for all range of power transformers. Neverthe-
less, a mathematical model adequately describes a trans-
former for the purposes of studying its time domain re-
sponse and monitoring its condition in service.

In § 2, we describe the experimental data to which the
subspace-based identification algorithm will be applied. In
§ 3, we outline the subspace algorithm used in this paper.
In § 4, we present our identification results applied to two
three winding transformers. § 5 concludes the paper.



II. EXPERIMENTAL DATA

In this section, we describe the experimental data sets.
The two data sets were obtained from the Advanced Tech-
nology Center of Pacific Power International, Newcastle,
Australia from the tests conducted on power transform-
ers in New South Wales. The data sets were obtained
from two identical transformers. Each transformer is a
132/66/11kV, 30MVA unit with a YyN0d1 vector group-
ing. Both transformers were placed in-service in the mid-
1960’s. At present, one of the transformers which we call
for brevity A1l is in service while the other unit called T1
failed in-service in January 1996.

A. Test and Measurement Process

The transformers were prepared for test by being re-
moved from service and electrically isolated from the trans-
mission system. For those windings which were delta con-
nected, the delta points were dis-jointed. For star wind-
ings, the neutral points were earthed, and the tests were
conducted on one phase pair at a time. Transformer tap
positions were noted. The instruments used to conduct the
tests were an arbitrary wave/function generator, a cathode
ray oscillope (CRO), and a PC with a portable general
purpose interface bus (GPIB) card. Essentially, the test
methodology consisted of using the arbitrary wave genera-
tor to inject a signal into one of the phase windings, then
using the CRO to measure this input voltage, its frequency,
the corresponding output voltage and the time lag between
the output and input signals. The information measured
by the CRO was transferred via a program (with the use of
the GPIB card) to the computer. The program obtained
the maximum and minumum values of each waveform from
the oscilloscope, then calculated the mean and amplitude
of the waveform. Next the phase shift for each sine wave
was computed from the time delay between the input and
output signals using the mean and amplitude information.
The tests were conducted over a wide range of frequencies
from 50Hz to 200 kHz. We refer the interested reader to
[2] for more details on the experimental procedure.

B. Transformers A1 and T1 Data

Transformers Al and T1 are both 3-winding transform-
ers. The frequency response magnitudes of Phase a—c plot-
ted in Fig. 1-2 were obtained by injecting a low voltage
amplitude into the TV winding of the transformers over a
frequency range of 50Hz to 200kHz and measuring the out-
put voltage at the LV winding. The numbers of frequency
points in Fig. 1 are respectively, 125, 123, and 121. Notice
that all the three responses are almost identical. For this
reason, we will work only with Phase a frequency response.
In Fig. 2, Phase a—c frequency response magnitudes of T'1
are plotted. The numbers of frequency points in Fig. 2 are
123, 137, and 125 respectively for Phase a, b, and c. Phase
a response of Transformer T1 has changed dramatically
after the failure, i.e., through fault generated large elec-
trical stress, which is observable from the magnitude plot,
whereas Phase b—c responses of T1 do not significantly dif-

fer from those of Al.
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Fig. 1. Phase a—c frequency response magnitudes of Transformer A1l.
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Fig. 2. Phase a—c frequency response magnitudes of Transformer T1.

I1I. SUBSPACE-BASED IDENTIFICATION IN FREQUENCY
DOMAIN

In this section, we introduce the subspace based identi-
fication algorithm used in this paper. This algorithm was
presented in [11] and its theoretical properties as well as
its applications to identification of lightly damped flexible
structures were reported in [11], [12]. See [11] for detailed
motivation of this algorithm. The focus of the current pa-
per is its application to power transformer identification.

Suppose that the “true” unknown system to be iden-
tified is a stable, multi-input/multi-output, linear time-
invariant, continuous-time system with input-output prop-
erties charecterized by the impulse response function g(t)
through the equation

y(t) = / " glsyult — ) dt 1)

where y(t) € RP, u(t) € R™, and g(t) € RP*™. We also
assume that the system is of finite order n and thus can be
described by a state-space model

z(t) = Az(t) + Bu(t)
y(t) = Cz(t) + Du(t) (2)



where z(t) € R™. The state-space model (2) has the im-
pulse response

g(t) = D §(t) + Ce?AB

where ¢ is Dirac’s delta function. The frequency response
of (1) is calculated as

o
Glw) = [ gte i at,
0
which for the state-space model (2) can be written as

G(jw) = C (jwl, — A)"" B+ D. (3)

In (3), j = v/—1 is the imaginary unit and I,, denotes the
n x n identity matrix.

Suppose that we are given N noise-corrupted samples of
the frequency response function

G =G(jwk)+nk, k=1,---,N.

The objective is to devise an identification algorithm which
maps data Gy, into a finite-dimensional transfer function
G. In estimating the transfer function, we will use the
following algorithm.

Algorithm:

1. Bilinearly transform the given data Gy, wy, as
G{ = Gy, k=1,---,N
0, = 2 atan(f_lwk) , k=1,---)N

where f is twice the bandwidth of the system (in
Hertz).

2. Extend the discrete-time transfer function samples G¢
to the full unit circle

Glar = Gh_p41]*s k=1,--- )N

where (-)* denotes complex conjugate.
3. Form the matrices G and W

[ G¢ Gﬁiu
1 el G¢ et Gl
G = —
vM : :
ej(q—l)alGéli ej(q_l)oMG?VI
i I, I,
1 e, elfmp
W = —
vM : :
eila=1)orp eila=1)bm
where M = 2N.

4. Calculate the QR-factorization

ReW ImW ] [Ry 0 Qf
ReG ImG | | Ra:1 Rao Q7 |-

5. Calculate the SVD
Ry, =USVT.

6. Determine the system order n by inspecting the singu-
lar values and partition the SVD such that X, contains
the n largest singular values

el 2[5 2[5

7. Determine the discrete-time system matrices A% and
C? as

~n\T N
A4 = (JlUs) JU,
ct = JU,
where J; are defined by
o= [I(q—l)p O(q—l)pxp]
o = [Og-1)pxp Tg-1)p]
Js = [IP OpX(qfl)p]

and 0;x; denotes the i x j zero matrix and X! =
(XTX)~1XT the Moore-Penrose pseudo inverse of the
full column rank matrix X.
8. If A has unstable eigenvalues, add the following sta-
bility ensuring projection step:
o Transform A to the complex Schur form with the
eigenvalues on the diagonal.
« Project any diagonal elements (eigenvalues) satisfying
1 < |\| € 2, into the unit disc by A; £ )\z(‘f—‘ -
1). Eigenvalues with magnitude |\;| > 2 are set to
zero. Eigenvalues on the unit circle can be moved
into the unit disc by changing the magnitude of the
eigenvalue to 1 — € for some small positive ¢, i.e.,
X AN —e).
o Finally transform A? back to its original form.
9. Solve the following least-squares problem to deter-
mine B? and D¢

M " 9
> |et-p-ct(en - a7 B|
k=1

where || X||p = />, , |2;,] denotes the Frobenius

norm.
10. The estimated continuous-time transfer function is
defined as

~ ~

G(s) :13+6’(sln—;1\)713

where the continuous-time state-space parameters
(A, B,C, D) are obtained from the discrete-time state-
space parameters (A%, B4, C¢, D9) as

f (I + A7 (44— 1,)
V2f (I, + A%~ B
= V2f C? (I, + AN
= D*— (I, + A% " B

o » o oy



The algorithm outlined above is noniterative and does not
require the frequencies be uniformly spaced. In Step 1, the
bilinear transformation

z—l_
z4+1

s=f ¥(z)

is applied to convert the problem to an equivalent discrete-
time identification problem and in Step 10, the estimated
continuous-time transfer function is obtained from the esti-
mated discrete-time transfer function by back transforma-
tion:

G(s) = C? (™" (2) I, — A%) "' B? + D?.

The transformation 9 and its inverse ¢)~! preserve max-
imums of transfer function magnitudes. Step 2 ensures
the estimated system will have real valued parameters. In
Step 3-7, the computation of A¢ and B? is based on the
shift-invariance structure of extended observability matrix.
Before we move to the next section, we make the fol-
lowing observations on the choice of parameters g,n and
€

« To obtain best accuracy, ¢ < M should be chosen as
large as possible.

o The best model order in Step 6 yielding the small-
est error tends to be high. We recommend Step 5 be
repeated until a satisfactory model order is obtained
comprimising both accuracy and model complexity.
An alternative strategy is to successively reduce a high
order G by the balanced truncation method.

o« In Step 8, we suggest ¢ be chosen to satisfy € <
ming <x,;<2 (JA;| — 1). The reason for this choice is that
when G is lightly damped and especially has a large
bandwidth, the discrete-time identified poles in Step 6
tend to cluster around the unit circle and a large value
for e may yield low accuracy. Most often, in particular
when signal-to-noise ratio is high and model order is
not taken very large, the projection step is not needed.

o An alternative stability ensuring method was proposed
in [9] by the following procedure

Al =7} [ J3Us ]

Opxn

This step should be applied whenever the original A%
is unstable.

IV. EXPERIMENTAL IDENTIFICATION RESULTS

In this section, we will discuss the results obtained from
application of the identification algorithm described in § 3.
We take f = maxy wg/m which coincides with twice the
Nyquist frequency when G is bandlimited and frequencies
are uniformly spaced. For greater flexibility, its value can
be adjusted as well.

A. Quality Measures

The quality of estimated models will be assessed by two
measures based on the fit between the data and the model.

The maximum error

IG — Gllm,cc = max |G(jer) — Gl (4)

and the root-mean-square error (rms)

N
~ 1 ~
IG = Glima = \| 3 2_1GGw) = Gel>. (5)
k=1

B. Model Order Determination

We start by trying to determine an appropriate model
order by the cross-validation technique [17]. We divide the
data set into two disjoint sets, the estimation data and val-
idation data. The division is made such that every odd
numbered frequency response sample is put in the estima-
tion set and every other in the validation set. Models of
different orders are determined from the estimation data,
and then model order is determined at the frequency points
of the validation data. The underlying assumption is that
if one begins with a low model order, the error on valida-
tion data will decrease as the model order increases until
an appropriate model order is found.
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Fig. 3. Model errors (4)—(5) for Phase a response of Transformer A1l
calculated on independent validation data using subspace-based
algorithm.

Applying subspace algorithm to Phase a frequency re-
sponse of Al, a sequence of models of order 2-39 are es-
timated for ¢ = 40 and N = 62. The frequency response
of each estimated model is calculated at the frequencies of
the validation data and the rms and max errors (4)—(5)
are determined using the 62 point validation data set. The
results are shown in Fig. 3. From the graph, it is hard
to judge a correct model order. At best, some isolated
cases are ruled out. This could be attributed to the insuf-
ficient number of data available for the estimation. The
calculated eight singular values in Step 6 of the algorithm
are 1.9611, 1.8849, 1.2063, 0.9951, 0.2578, 0.2419, 0.0903,
0.0866, which suggest that model order must be at least
6. In Fig. 4-5, measured and estimated 6th and 31st order
model frequency responses are plotted. In the estimation of



model orders, the complete data record was used. In partic-
ular, Fig. 5 shows the excellent fit obtained by the subspace
method. Notice that model responses are almost identical
up to 30 kHz. In Fig. 6, the frequency responses of 17th
and 6th order identified models and the model obtained by
truncating balanced realization of the former are plotted.
Fig. 6 supports our view that low order models obtained
either directly by the subspace algoritm or indirectly trun-
cating balanced realization of a high order model identified
by the subspace algorithm have the same accuracy.
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Fig. 4. Measured and estimated 6th order model Phase a frequency
response magnitudes of Transformer Al using subspace based
algorithm.
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Fig. 5. Measured and estimated 31st order model Phase a frequency
response magnitudes of Transformer A1l using subspace based
algorithm.

Next we apply the subspace algorithm to Phase a fre-
quency response of Transformer T1. A sequence of models
of order 1-20 are estimated for ¢ = 40 and N = 61. The
model validation results are plotted in Fig. 7. From the fig-
ure, it is seen that both the rms and maximum errors are
minimized for the 17th order model. Indeed, Fig. 8 shows
the excellent fit obtained for the 17th order model. The
high frequency fit to data can even be further improved
by using higher order models as shown in Fig. 9 for the
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Fig. 6. Estimated and reduced model Phase a frequency responses of
Transformer Al. 17th and 6th order models are estimated using
subspace based algorithm and reduced model is extracted from
the balanced realization of 17th order model.

31st order identified model. It is evident from Phase c fre-
quency response magnitude plotted in Fig. 2 that a 6th
order model is not suitable to capture the dynamics of a
failed-in three winding transformer. Transformer failures
are usually accompanied by the generation of new modes
and the disappearance of old modes as shown in Fig. 8.
Existing mode shapes and natural frequencies are also sub-
ject to dramatic changes. This variation of model structure
makes it difficult to correlate winding deformations to the
elements of transformer equivalent circuit.
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Fig. 7. Model errors (4)—(5) for Phase a of Transformer T1 calculated
on independent validation data using subspace-based algorithm.

We have also tried two nonlinear least-squares (NLS) al-
gorithms as implemented by invfreqs and invfreqz com-
mands in MATLAB on Phase a frequency responses of
Transformers A1l and T1. We observed that the identi-
fication errors (4)-(5) fluctuated with model order in con-
trary to the pattern seen in Fig. 7. In passing, there is
a parametric identification algorithm in [16] developed for
systems with a large dynamic range, which might be appli-
cable to the transformer identification problem considered
in this paper.
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Fig. 8. Measured and estimated 17th order model Phase a frequency
responses of Transformer T1 using subspace based algorithm.
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Fig. 9. Measured and estimated 31st order model Phase a frequency
response magnitudes for Transformer T1 using subspace based
algorithm.

V. CONCLUSIONS

In this paper, we applied a recently developed subspace-
based identification algorithm to obtain mathematical
models of power transformers from frequency response
data. Models delivered by the subspace-based identifi-
cation algorithm can be refined further by parametric
optimization techniques such as the maximum likelihood
search. Mathematical models are sufficient for a study of
transient response of transformer and monitoring its con-
dition in service. The proposed model development may
be viewed as the first step towards deriving a transformer
equivalent circuit. Our view is that once an analytical
transformer model is available, it is rather straightforward
to derive the parameters of an equivalent circuit to match
the frequency response of the model. This approach is cur-
rently under investigation. The traditional second or third
order transformer equivalent circuits [3], [1], [10], [4], [5]
do not capture the dynamics of realistic power transform-
ers. The combination of finite-element methods with the
subspace-based identification algorithms may produce ac-
curate transformer equivalent circuits from frequency re-
sponse data.
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