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Abstract

There has been recent interest in using orthonormalised
forms of fixed denominator model structures for system
identification. A key motivating factor in the employment
of these forms is that of improved numerical properties.
Namely, for white input perfect conditioning of the least-
squares normal equations is achieved by design. However,
for the more usual case of coloured input spectrum, it
is not clear what the numerical conditioning properties
should be in relation to simpler and perhaps more natu-
ral model structures. This paper provides theoretical and
empirical evidence to argue that in fact, even though the
orthonormal structures are only designed to provide per-
fect numerical conditioning for white input, they still pro-
vide improved conditioning for a wide variety of coloured
inputs.

1 Introduction

The problems studied in this paper are ones in which N
point data records of an input sequence {u;} and output
sequence {y;} of a linear time invariant system are avail-
able. Tt is assumed that this data is generated as follows

yt = G(q)ug + vg.

Here G(q) is a stable (unknown) transfer function describ-
ing the system dynamics that are to be identified by means
of the observations {u;}, {y:}, and the sequence {v;} is
some sort of possible noise corruption. The input sequence
{u;} is assumed to be quasi—stationary in the sense used
by Ljung ([5]) and also such that the associated spectral
density satisfies @, (w) > 0.

The method of estimating the dynamics G(q) which is
of interest here is one wherein the following ‘fixed denom-

inator’ model structure is used
p—1

G(g,8) =) BeTr(g) (1)
k=0

where the {3} are real valued co-efficients and the trans-
fer functions {F%(¢)} may be chosen in various ways, but
in every case the poles of the transfer functions {Fy(q)}
are selected from the set {&,&1,---,&p—1} C D where
D 2 {2 € C: |z| < 1} with C being the field of complex
numbers. These fixed poles {{} are chosen by the user
to reflect prior knowledge of the nature of G(g). That is,
in the interests of improved estimation accuracy, they are
chosen as close as possible to where it is believed the true
poles lie ([11, 4]).

An advantage of this simple model structure is that
it is linearly parameterised in {8}, so that with 8 £
[Bo,B1, -, Bp—1]T then the least-squares estimate

N-1
§ = argmin {% Y - G(q,ﬂ)utf} @)
t=0

BERP

is easily computed. Specifically, the solution B to (1)
can be written in closed form once the model structure
(1) is cast in familiar linear regressor form notation as

G(q, B)uy = [ B where
b= M@ s @) 2 [Fol@ Foa @ 3)

so that (1) is solved as

R N-1 N1
B= (Z Yy ) > b (4)
t=0 t=0

provided that the input is persistently exciting enough for
the indicated inverse to exist.

However, a large literature ([11, 12, 4, 9, 1, 6]) has de-
veloped suggesting that instead of using the model struc-
ture (1), one should instead use its so-called ‘orthonor-
mal’ form. That is, the model structure (1) should be



re-parameterised as

p—1
0) = Z 0xBr(q) (3)
k=0

where now the {Bj(q)} are transfer functions such that
.7‘-1)71} = Span{Bo, Ty, Bpfl} (6)

but also such that the {Br(¢)} are orthonormal with re-
spect to the inner product

Span{Fo, - - -,

(B, Bn) = ——

o B,.(e7) B (e3%) dw. (7

—T

There have been several orthonormal basis function for-
mulations proposed in the literature ([4, 11, 12, 1]) but this

paper focuses on the particular choice discussed in ([6]) of

Bn(q) =

V1_|£n|2 oy l_g_kq

I1 : (8)
G=&n o \a—&

In this case, defining in a manner analogous to the previ-

ous case

¢t =Tp(q)ue, Tp(a) = [Bo(@), -+, Bp-1(a)]" 9)

then the least squares estimate with respect to the model
structure (4) is given as
N1

N—-1
7- (z w) >
t=0 t=0

A key point is that since there is a linear relationship
¢ = Jy for some non-singular J, then ﬂ = JT8 and
hence modulo numerical issues the least-squares frequency
response estimate is invariant to the change in model
structure between (1) and (4). Specifically:

(10)

~

G(e™,B) = AL(e™)B

N 1N

_ AT (z ) 3 v
=0 t=0

N 1N
= [JAH(e?)] (Z ¢t¢t> > by
0 t=0
= IT()8 = G(,6).

Given this exact equivalence of frequency response esti-
mates, it is important to question the motivation for us-
ing the structure (7) (which is complicated by the precise
definition of the orthonormal bases (7) or whichever other
one is used ([4, 1])) in place of some other one such as
(1). In particular, depending on the choice of the {F(q)},
the structure (1) may be more natural and/or be more
straightforward to implement, so it is important to exam-
ine the rationale for employing the equivalent orthonor-
malised version (4).

To date, a major part of addressing this question has
been to motivate the use of the orthonormal form (4) along
numerical conditioning lines ([11, 12, 4, 6]). To elaborate
further on this point, it is well known ([3]) that the nu-
merical properties of the solution of the normal equations
arising in least squares estimation using the model struc-
tures (1) and (4) are governed by the condition numbers
K(Ry(N)) and k(Rg(IN)) of the matrices

N—
%; tlbt: R¢ N2¢t¢t

where the vectors 1; and ¢, are defined in (2) and (8) re-
spectively. However, by the quasi—stationarity assumption
and by Parseval’s Theorem, the following limits exist

| >

ApALD, dw

—m

Ry £ lim —Z¢t¢t =5

N—oo N

(11)

1 N1
A T T
lim — =
Ngnoo N t—zl ¢t¢t
(here -* denotes ‘conjugate transpose’) so that the nu-
merical properties of least squares estimation using the
model structures (1) and (4) should be closely related to
the condition numbers k(Ry) and k(Ry). These condition
number quantities, are defined for a matrix R as ([3])

1 ™
= /_ ] T,I%¢, do, (12)

=
<&
Il

K(R) £ || RIIR

which is clearly dependant on the matrix norm used. Most
commonly, the matrix 2-norm is used ([3]), which for pos-
itive definite symmetric R is the largest positive eigen-
value. In this case k(R) is the ratio of largest to smallest
eigenvalue of R, and is a measure of the Euclidean norm
sensitivity of the the solution vector z of the equation
Rx = b to errors in the vector b. If not specified other-
wise, it will be understood in this paper that this 2-norm
defined condition number is being considered.

Now, for white input {u;}, by definition its spectrum
®,(w) is a constant (say «) so that by orthonormality
Ry = al and hence the normal equations are perfectly
numerically conditioned. However, an obvious question
concerns how the condition numbers of R, and R4 com-
pare for the more commonly encountered coloured input
case. A key result in this context is that purely by virtue
of the orthonormality in the structure (4), an upper bound
on the conditioning of Ry may be guaranteed for any @,
by virtue of the fact that ([9, 8]) (A(R) denotes the set of
eigenvalues of the matrix R.)

min &, (w) < ARy) < max P, (w).

wE[—m,m) wE[—m,m)

(13)

No such bounds are available for the matrix R, corre-
sponding to the general (non-orthonormal) structure (1).
This suggests that the numerical conditioning associated
with (4) might be superior to that of (1) across a range of



coloured ®,, and not just the white &, that the structure
(4) is designed to be perfectly conditioned for.

However, in consideration of this prospect, it would
seem natural to also suspect that even though Ry = I
is designed to occur for unit variance white input, that
Ry = I might equally well occur for some particular
coloured input. If so, then in this scenario the structure
(4) would actually be inferior to (1) in numerical condi-
tioning terms. Therefore, in spite of the guarantee (12), it
is not clear when and why the structure (4) should be pre-
ferred over the often-times simpler one (1) on numerical
conditioning grounds.

This paper is devoted to examining these questions.

2 Existence of Spectra

This section addresses the issue of the existence of a par-
ticular coloured ®,, for which the non-orthonormal model
structure (1) leads to perfect conditioning (Ry = I) and
would thus make it a superior choice on numerical grounds
than the ‘orthonormal’ structure (4). This issue is sub-
sumed by that of designing a ®,(w) parameterised via
real valued co-efficients {cy} as

00
E Ckejwk:

k=—o0

(14)

and so as to achieve an arbitrary symmetric, positive def-
inite Ry. In turn, this question may be formulated as the

search for the solution set {---,c_1,c¢q,c1,- -} such that
o
1 ek dz)
2 (g e ) =

which (on recognising that since ®,, is necessarily real val-
ued then ¢y = c_j) may be more conveniently expressed
as the linear algebra problem

Co

1
I ¢ | =vec{Ry} (15)

where the vec{-} operator is one which turns a matrix into
a vector by stacking its columns on top of one another in
a left-to-right sequence and the matrix II, which will be
referred to frequently in the sequel, is defined as

dz

a 1

e Ay(2) ® 1) 1 ] 2 16
2 o 4 [0 © LG e+ 7,1 (16)
Here ® denotes the Kronecker tensor product of matrices.
The solution of (14) must be performed subject to the

constrain that the Toeplitz matrix

Ch C1 C2
i C C

is positive definite, which is a necessary and sufficient con-
dition ([10]) for @, (w) > 0.

Now it might be supposed that since (14) is an equa-
tion involving p(p + 1)/2 constraints, but with an infinite
number of degrees of freedom in the choice cg, ¢1,- - - then
it should be possible to solve for an arbitrary symmetric
positive definite Ry.

Perhaps surprisingly, this turns out not to be the case,
the reason being that (as established in Theorem 4.1 fol-
lowing) the rank of II in (15) is always only p. In fact
therefore, the achievable Ry live only in a sub-manifold of
the p(p+1)/2 dimensional manifold of px p symmetric ma-
trices, and this sub-manifold may not contain a perfectly
conditioned matriz. Furthermore, as can be seen by (15),
this sub-manifold that the possible Ry, lie in will be com-
pletely determined by the choice of the functions Fj(z) in
the model structure (1) and hence also in the definition
for Ap(2) in (2). These principles are most clearly exposed
by considering a simple two dimensional example.

3 Two Dimensional Example

Consider the simplest case of p = 2 wherein there are
only 3 constraints inherent in (14), and one may as well
neglect the third row of [Ap(2) ® I,]A,(2) (since it is equal,
by symmetry, to the second row) and instead consider

To(2) o () Fol)Fo(2) + 2 Fol5) Fo )
fo(z)fl(g) = | AERE + 5 REAEG)
Fi(z)F1(3) fl(Ell)]-‘l(z) + 261}-1(%)}-1(%)

where in forming the right hand side of the above equation
it has been assumed that Fo(z) has a pole at z = &, F1(2)
has a pole at z = &, that Fo(0) # 0, F1(0) # 0 and that
£0,& € R. That is Fo(z) and F; (2) are of the simple form
(607 51 S R)

N N
-7:0(2)=m, fl(z)zm,

The advantage of the re-parameterisation into causal and
anti—causal components is that it then straightforward to
calculate IT from (15) as

(17)

Folg)(z5) 2F0(&)
M= | R Ald)+Fo(@) (18)
RO AR
Given this formulation, it is then clear that
Fi(g) Fo(g) _
Ty b apy [Tl 09)
provided that
Fo(1/&)éo = Fi(1/&)& (20)

which is certainly true for the first order Fo(z), Fi(2) in
(16). Therefore, II is of row (and hence column) rank no



more than two. Therefore, regardless of the choice of &,
it is only possible to manipulate (via change of ®,) the
corresponding R, in a two dimensional sub-manifold of
the full three dimensional manifold of symmetric two-by-
two matrices.

Furthermore, the identity matrix is not part of the two-
dimensional sub-manifold, since if it were to lie in the
subspace spanned by the columns of II, it would have to be
orthogonal to the normal vector specifying the orientation
of this subspace (the left hand row vector in (18)). But it
isn’t, since

RO/6) | F0/&) 1|1
/e emaa)] | 0|70

provided Fo, F; are of the form shown in (16). Therefore,
even though @, can be viewed as an infinite dimensional
quantity, its effect on Ry is not powerful enough to achieve
an arbitrary positive definite symmetric matrix. In par-
ticular, there is no ®, for which the simple and natural
fixed denominator basis (16) is perfectly conditioned.

4 Key Result

Given these motivating arguments specific to a two-
dimensional case, it is of interest to consider the case of
arbitrary dimension. As the arithmetic considered in the
previous section illustrated, such a study will become very
tedious as the dimension is increased. To circumvent this
difficulty, the key idea of this section is to in fact replace
the study of the rank of II associated with an arbitrary
basis {F(g)} by its rank with respect to the orthonormal
basis {B,(q)} specified in (7). Fundamental to this strat-
egy is that via the span equivalence condition (5) the rank
is invariant to the change of basis, so the most tractable
one may as well be employed.

Using these ideas leads to the following key result ex-
posing the limited flexibility available in the assignment
of Ry, Ry by manipulation of the spectral density ®,,.

Theorem 4.1 With I defined as in (15), and for all
bases that maintain the same span as in condition (5) then

RankIT = p.

Proof: The main idea of the proof is to recognise that
the rank of II defined in (15) is invariant to a change of
the basis function {F;} making up A, involved in the
definition of II, and itself defined in (2). See ([7]) for
details. ]

This theorem exposes the key feature imbuing orthonor-
mal parameterisations with numerical robustness beyond
the white input case. Specifically, for white input, Ry = I
is perfectly numerically conditioned, while for this same
white input Ry £ % £ I which has inferior conditioning.
As @, is changed from the white case, both R, and Ry,
will change, but but only in p-dimensional sub-manifolds.

This feature of highly restricted mobility raises the pos-
sibility that since (by construction) I is in the manifold
of possible Ry, but may not (as the previous section il-
lustrated) be in the manifold of possible Ry, then the
orthonormal model structure (7) may imbue a numerical
robustness to the associated normal equations across a
range of coloured .

5 Robustness

Having indicated via theorem 4.1 that the orthonormal
parameterisation provides a numerical conditioning ad-
vantage that is robust to the nature of the input spectral
density ®,,, this section delves deeper on this issue, and
in order to do so it is expedient to split ®, into ‘causal’
and ‘anti—causal’ components as

By (w) = (™) + p(e™)

where ¢(z) is known as the ‘positive real’ part of ®,, and
is given by the so-called Hergloz-Riesz transform ([10]) as

(21)

> 1

T (14 zelw

_% k_
go(z)—2+;ckz 1

With this definition in hand, the following lemma will
prove to be useful.

Lemma 5.1 The matriz Ry defined via (11), (7) and (8)
has entries given by

e(n) + (&) sn=m,

ZAmnso

[Roln =
n>m

where

i a VOGP 6P -6

m,n (1- é‘mzz)(l - gnZz)
[ (1)
I (55
i

and it is understood that the array indexing of Ry begins
at m,n = 0.

Proof: See ([7]). [ |

This formulation then allows the following result to be
established:

Theorem 5.1 The eigenvalues {Ag, A1,---,A\p_1} of Ry
are contained in regions Ao, Ay, -+, Ap_1 defined by

Ap2{z€R:|z—2Rep(&n)| < am}

where

n=0
n#Em



Proof: See ([7]). [ |

Note that this theorem provides a tight characterisation
in the sense that for white input, ¢(&) = co/2 a constant,
in which case the theorem provides the eigenvalues as be-
ing all at Ay = ¢¢ with tolerance ay, = 0.

However, more generally the theorem provides fur-
ther indication of the general robustness of the condi-
tion number of Ry4. Specifically, if ¢(z) is smooth, then
Theorem 5.1 indicates that since in this case the terms
lo(€;) — ¢(€;41)| will then be small, then the bounds am,
on the eigenvalue locations {2Re p(&m)} will be tight, and
so the true eigenvalues should be very near to the loca-
tions {2Rep(&,)} which again if ¢(z) is smooth, will be
relatively tightly constrained.

6 Asymptotic Analysis

As mentioned in the introduction, a key feature of the or-
thonormal parameterisation (4) is that associated with it
is a covariance matrix with numerical conditioning guar-
anteed by the bounds

min @, (w) < A(Ry) < max ®,(w).

wE[—7,m) wE[—7,m]

(22)

A natural question to consider is how tight these bounds
are. In ([8]), this was addressed by a strategy of anal-
ysis that is asymptotic in p. Specifically, define M, =
lim,_,o, Ry. In this case, My is an operator £, — £, 50
that the eigenvalues of the finite dimensional matrix R,
generalize to the continuous spectrum A(R) of the oper-
ator My defined as ([2])

A(My) ={X € R: A\ — My, is not invertible}.
This spectrum can be characterized as follows.

Lemma 6.1 Suppose that Y .- (1 — |&|) = oo. Then
A(My) = Range{,(w)}.

Proof: See ([8]). [ |

This provides evidence, that at least for large p (when the
issue of numerical conditioning is most important), that
the bounds (21) are in fact tight, and therefore

max,, ®,(w)
Ry) ~ — 23
K(Ry) min,, @, (w) (23)
might be expected to be a reasonable approximation.
Of course, what would also be desirable is a similar ap-
proximation for Ry, and of course this will depend on the
nature of the definition of the {F;(¢)}. One particularly

natural definition is that of

P =
Fl(@) = 55 Dale) = [ez-¢ (24)
p £=0

for k = 0,1,---,p—1 and {&, --,&—1} € D the fixed
pole choices. This case is considered important, since

possibly the most straightforward way of realising a fixed-
pole estimate G(q, ) as originally defined in (1) of § 1
would be to simply use pre-existing software for estimat-
ing FIR model structures, but after having pre-filtering
the input sequence {u;} with the all-pole filter 1/D,(q).
This is identical to using the general model structure (1)
with the {Fr(g)} choice of (23) above, with estimated FIR
co-efficients then simply being the numerator co-efficient
estimates {fo,- -, Bp—1}-

Fortunately, for this common structure, it is also possi-
ble to develop an approximation of the condition number
k(Ry) via the following asymptotic result which is a direct
corollary of Theorem 6.1.

Corollary 6.1 Consider the choice for the { Fr(q)} defin-
ing Ry via (2) and (10) given in (23). Suppose that only
a finite number of the poles {&} are chosen away from
the origin so that

p—1
A s Jw _ ¢ |2
D) £ fim T] I - & (25)

exits. Define, in a manner analogous to that pertaining to
Lemma 6.1, the operator My : £ = £y as

M¢ é lim R,/,.

p—00

Then

Pu(w)
A(My) = Range { — .
(My) ng { D) }
Proof: See ([7]) [ |
In analogy with the previous approximation, it is tempting
to apply this asymptotic result for finite p to derive the
approximation

max,, ®,,(w)/|Dyp(e?)]?

K(Ry) ~ min,, &, (w)/|Dp(e?*)?”

(26)

Now, considering that |D,(e/*)|> = [[52, |/ — &|? can
take on both very small values (especially if some of the
& are close to the unit circle) and also very large values
(especially if all the {£;} are chosen in the right half plane
so that aliasing is not being modelled), then the maxima
and minima of ®,,/|D,|? will be much more widely sepa-
rated than those of ®,,. The approximations (22) and (25)
therefore indicate that estimation with respect to the or-
thonormal form (4) could be expected to be much better
conditioned than that with respect to the model structure
(2) with the simple choice (23) for a very large class of
@, - an obvious exception here would be &, = |D,|? for
which R¢ =1.

However, this conclusion depends on the accuracy of
applying the asymptotically derived approximations (22)
and (25) for finite p. In the absence of theoretical analysis,
which appears intractable, simulation study can be pur-
sued. Consider p in the range 2-30 with all the {£,} chosen
at & = 0.5, and ®,(w) = 0.36/(1.36 — cosw). Then the



maximum and minimum eigenvalues for Ry, and Ry are
shown as solid lines in the left and (respectively) right dia-
grams in figure (1). The dash-dot lines in these figures are
the approximations (22) and (25). Clearly, in this case the
approximations are quite accurate, even for what might be
considered small p. Note that the minimum eigenvalue of
Ry is shown only up until p = 18 since it was numeri-
cally impossible to calculate it for higher p. Again, this

Orthonormal Basis - Eigenvalues and approsimatons

Orthonormal Bas's - Eigenvalues and approsimatons

Figure 1: Solid lines are mazimum and minimum eigen-
values of (left figure) Ry and (right figure) Ry for o range
of dimensions p. The dash dot lines are the approzima-
tions (22) and (25).

provides evidence that even though model structures (4)
parameterised in terms of orthonormal {B(q)} are only
designed to provide superior numerical conditioning prop-
erties for white input, they seem to also provide them for
a very wide range of coloured inputs as well.

7 Conclusions

A variety of arguments have been presented to indicate
that the condition numbers k(Ry) and &(Rg), which gov-
ern the numerical properties of least squares estimation
associated with (respectively) simple ‘fixed denominator’
model structures and their orthonormalised forms, are
such that k(Ry) > k(Ry) for a very wide class of input
spectra ®,,. While this might be considered somewhat
surprising, since it is only designed to occur (by the con-
struction of the ‘orthonormal’ model structure) for white
®,,, it is also important since it provides a strong argument
for why the extra programming effort should be expended
to implement the various orthonormal model structures
that have recently been examined in the literature. This
analysis is made in counter-argument to the charge (as
illustrated in the introduction), that a change of model
structure is not the same as a change of estimation method
- equivalent structures provide identical estimates, modulo
the numerical issues considered here.
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