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Abstract

Actuator constraint handling is necessary for many cross-directional controllers. We discuss how

optimal steady state performance can be guaranteed by modifying an internal model control structure

with a non-linear element. For the simple dynamics associated with most web processes this also gives

good closed-loop dynamic behaviour. Thus unconstrained control design techniques may be applied

directly to the constrained control problem.

1 Introduction

Cross-directional control design is required for a wide class of industrial web forming processes including
paper making, plastic film extrusion, coating processes and steel rolling. In these manufacturing processes
a wide strip of material is produced continuously (see Fig 1). The cross-directional problem is to control
variations in the profile across the strip, orthogonal to the direction of production. Typically the profile
is controlled with an array of evenly spaced actuators with near identical response. The actuators are
usually subject to hard physical constraints, and may have a limited dynamic range. The cross-directional
profile is usually subject to disturbances which are constant or slowly varying in time. The main aim
of the control system is to remove such disturbances; limitations in actuator configuration as well as
robustness requirements usually restrict the control action to low spatial bandwidths across the web.
Cross-directional control design has received considerable attention in the academic community—see for
example [13] and references therein, as well as [9] and associated contributions.

There are two main schools of cross-directional control design (exemplified by Chapters 6 and 7 in [13]):
firstly unconstrained control (perhaps with limited anti-windup) based on robust control methodologies
and secondly constrained control achieved via MPC (model predictive control). Briefly the former guar-
antees robust dynamic behaviour while the latter offers improved steady state response (provided the
model is sufficiently accurate [37, 21]). In this paper we discuss how the simple model structure common
to most web forming processes allows optimal constraint handling to be incorporated as a modification to
an IMC (internal model control) structure. Thus robustness is preserved while steady state performance
may (in some circumstances) be improved significantly. The resulting structure may be viewed either as
an optimal anti-windup scheme for robust control design or as the basis for an MPC design methodology
according to taste.
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Figure 1: Generic web forming process.

We will make the standard assumption that the open loop behaviour of the output profile y(t) may be
well approximated by the model

y(t) = z−kh(z−1)Bu(t) + d(t) (1)

Here y(t) ∈ R
n represents the measured profile across the web and u(t) ∈ R

m represents the array
of actuators. Typically n > m. We assume the whole profile y(t) is available simultaneously; if raw
measurements are obtained from a scanning sensor, then a periodic Kalman filter [15, 27] can be used
to estimate y(t). The dynamics are represented as a delay of integer k samples and a biproper transfer
function h(z−1). Usually h(z−1) is low order and often simply a first order response together with a
partial delay of ζ/(1 + ζ) samples, with ζ ≥ 0. Approximating the partial delay as an open-loop zero at
z = −ζ we may write

h(z−1) =

(

1 − α

1 − αz−1

) (

1 + ζz−1

1 + ζ

)

(2)

We have assumed, without loss of generality, that h(z−1) has unit gain. Note that if ζ > 1 the plant
model has a non-minimum phase zero.

The (n × m) interaction matrix B describes the steady state response of the actuators on the profile.
Finally d(t) ∈ R

n represents disturbances on the plant.

Let B be decomposed as
B = ΦΣΨT (3)

with Φ and Ψ orthonormal (the description is rather general as we may allow either Φ or Ψ to be the
identity matrix [12]). One possibility is the singular value decomposition [10, 13], in which case Σ is
diagnonal (if n > m the upper block of Σ is diagonal, while the lower block is zero).

We can then write y(t) and u(t) in terms of basis functions which are the columns of Φ and Ψ respectively.
We will assume that these basis functions are “spectral” [17] in the sense that they are naturally ordered
according to some smoothness criterion. With an abuse of terminology, we will classify them as low,
medium and high frequency modes. The effect of the interaction matrix is assumed to attenuate for
high frequencies. In the case of the singular value decomposition the modes are ordered according to the
magnitude of the singular value.

Ultra-high frequency modes of Φ are uncontrollable [10, 17]. With model mismatch the relative uncer-
tainty is greater at high frequencies, and may result in closed-loop instability [13]. Even in the case of
closed-loop stability, attempting to control uncertain modes may degrade steady state performance [37].
It is thus generally accepted that the controller should not act on high order modes. It may also be useful
to restrict the dimension of the input space [19] — for example the actuators are usually constrained to
sum to zero. We will assume the controller is designed to act only on r ≤ min (n,m) modes. It will be
useful to define a reduced interaction matrix Br ∈ R

(n,m) which can be decomposed as

Br = ΦrΣrΨ
T
r (4)
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with Φr ∈ R
(n,r) representing the modes we wish to control, Σr ∈ R

(r,r) and Ψr ∈ R
(m,r). We will write

η(t) = ΦT
r y(t)

µ(t) = ΨT
r u(t) (5)

It will be useful to define Ψ⊥
r ∈ R

(m,m−r) as an orthonormal matrix whose columns span the orthogonal
complement to the space spanned by the columns of Ψr. The restriction on the input space may then be
expressed as requiring

(

Ψ⊥
r

)T
u(t) = 0 (6)

If sufficient modes are excluded it is possible to design robust controllers that do not violate actuator
constraints [20, 19, 10, 13, 33]. It has been recommended [19] that r should be chosen to ensure no
actuator touches the constraint boundary. The designs of [13] are based on IMC structures. The designs
of [19, 33] are modifications of Dahlin controllers, themselves variants of IMC. Furthermore, any linear
controller of the form

u(t) = −ΨrC(z−1)ΦT
r y(t) (7)

can be rearranged as an IMC

u(t) = −ΨrQ(z−1)ΦT
r y(t) + ΨrQ(z−1)Φrz

−kh(z−1)Bru(t) (8)

with

Q(z−1) = C(z−1)
[

I + z−kh(z−1)ΣrC(z−1)
]−1

(9)

Limited anti-windup schemes have been proposed for such controllers [8, 19, 13, 30]. However there
may be mid-frequency modes where the model mismatch is relatively small, but where unconstrained
control action would require actuator constraint violation even in steady state. In such cases restricting
r as above would result in economic disadvantage [37, 21]. Similarly anti-windup schemes that take no
account of actuator directionality can lead to severe performance degradation [22, 32].

In such cases optimal steady state performance requires the solution of a constrained optimization. This
was recognized for the cross-directional control problem in [3], when limitations in computing power were
an impediment to implementation. Subsequently several MPC strategies with a quadratic program have
been discussed in the literature, for example [17, 27]. Robustness considerations still require attenuated
control action at high modes; this can be achieved either via equality constraints [17], or by penalising
such action in the MPC cost function. If the latter strategy is adopted alone, the effects of integral
action can lead to severe performance degradation [37, 33]. Strategies for minimising l1 norms [7] and
l∞ norms [11] have also been discussed. A number of control designs that seek approximate solutions to
the quadratic cost have also been discussed—for example [4, 35, 5, 16, 29, 13].

In this paper we discuss the design of cross-directional controllers that preserve the robust properties
of unconstrained methods, whilst ensuring, where possible, optimal steady state performance. We will
also seek efficient computational implementation and good dynamic response. In particular we propose
preserving the IMC structure for both control design and implementation. The constraints can then
be satisfied by solving a deadbeat optimization problem. This is, of course, well known as a particular
implementation of MPC [28] and may be considered [22] as a generalization of standard anti-windup
schemes such as those in [41].

2 Constrained IMC

2.1 Control criteria

Suppose the disturbance d(t) in (1) is fixed to some steady state value dss. Then the ideal steady state
performance criterion is to minimise

∣

∣

∣

∣ΦT
r y(t)

∣

∣

∣

∣ for some norm. The projection term ΦT
r is included so
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that higher modes are not penalised. Model mismatch may cause steady state performance degradation
[37]. If this degradation is significant, then the number of modes acted upon should be reduced. We will
assume the number of modes is well-chosen.

It may not be possible to set ΦT
r y(t) to zero since the actuator movement is limited. Typically each

actuator has a minimum and maximum value:

umin ≤ ui(t) ≤ umax (10)

Often a bending constraint is also placed on adjacent actuators, commonly of the form:

ūmin ≤ ui−1(t) − 2ui(t) + ui+1(t) ≤ ūmax (11)

We will represent all such static constraints as requiring

u(t) ∈ U (12)

If a fixed (steady state) estimate d̂ss of d exists, then one method for attempting to minimise
∣

∣

∣

∣ΦT
r y(t)

∣

∣

∣

∣

is to demand that in steady state u(t) = uss with

uss = arg min
u

∣

∣

∣

∣

∣

∣
ΦT

r

(

Bu + d̂ss

)∣

∣

∣

∣

∣

∣
such that u ∈ U and

(

Ψ⊥
r

)T
u = 0 (13)

In some MPC schemes set points for inputs and outputs (and states) are computed at each sample using
such a static optimisation criterion [27]. These set points are then used in the main dynamic optimisation,
which is also solved at each sample.

Consider the IMC scheme depicted in Fig 2. A disturbance estimate is obtained as

d̂(t) = y(t) − z−kh(z−1)Bu(t) (14)

In turn the disturbance estimate is passed through a linear filter (we will assume that the set point is
zero) to give

d̂f (t) = Q(z−1)d̂(t) (15)

Finally the control action u(t) is generated via a static non-linear function

u(t) = NL
[

d̂f (t)
]

(16)

If we choose Q(1) = 1 and the non-linearity to be

u(t) = arg min
u

∣

∣

∣

∣

∣

∣
ΦT

r

(

Bu + d̂f (t)
)
∣

∣

∣

∣

∣

∣
such that u ∈ U and

(

Ψ⊥
r

)T
u = 0 (17)

then we have a controller that satisfies (13), provided d̂f (t) converges to some d̂ss. Under such conditions,
if y(t) also converges to a steady state value yss then

d̂ss = yss − Buss (18)

Furthermore, if no constraints are active, then (under the assumption that Σr has full rank),

u(t) = −ΨrΣ
−1
r ΦT

r Q(z−1)d̂(t)

d̂(t) = y(t) − z−kh(z−1)Bu(t) (19)

Thus we have a control scheme that behaves as a standard IMC when away from the constraints, but
satisfies (when stable) the steady state optimality condition (13). This is achieved by including a static
non-linearity in the control structure, and may be considered as an example of the anti-windup schemes
recommended in [22]. The solution method for the non-linearity will depend on the choice of norm, as
discussed below. In the remainder of this section, we discuss how the control structure may be tailored
for the cross-directional control problem.
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NL Plant

z−kh(z−1)B

Figure 2: Basic IMC configuration with non-linear element for anti-windup.

2.2 Implementation in modal form

Solving (17) is equivalent to finding

u(t) = Ψrµ(t) (20)

with

µ(t) = arg min
µ

∣

∣

∣

∣

∣

∣
Σrµ + δ̂f (t)

∣

∣

∣

∣

∣

∣
such that Ψrµ ∈ U (21)

where

δ̂f (t) = ΦT
r d̂f (t) (22)

We may write

δ̂f (t) = Qδ(z
−1)δ̂(t) (23)

with

δ̂(t) = ΦT
r d̂(t)

Qδ(z
−1) = ΦT

r Q(z−1)Φr (24)

This leads to the scheme depicted in Fig 3. As stated this is merely a numerical modification. However
it is more elegant to design the controller in the context of the modal decomposition [13, 17]. Thus in
place of (24), Qδ(z

−1) should be chosen to be diagonal with

Qδ(1) = I (25)

Furthermore it may be seen that careful exploitation of the chosen basis function representation can lead
to significant increase in computational efficiency. Nevertheless we stress that the use of basis functions
is motivated by the requirement to ensure robust performance rather than computational efficiency.

It is insightful to consider both the unconstrained performance and the steady state performance:

• Without the constraint u(t) ∈ U (and under the assumption Σr has full rank) this gives the solution

u(t) = Ψrµ(t)

µ(t) = −Σ−1
r Qδ(z

−1)δ̂(t)

δ̂(t) = ΦT
r y(t) − z−kh(z−1)Σrµ(t) (26)

• In steady state (under the assumption of closed-loop stability)

uss = Ψrµss

µss = arg min
u

∣

∣

∣

∣

∣

∣
Σrµ + δ̂ss

∣

∣

∣

∣

∣

∣
such that Ψrµ ∈ U

δ̂ss = ΦT
r yss − Σrµss (27)
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NL Plant

µ(t)
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ΦT
r

Figure 3: IMC with anti-windup in modal form.

2.3 Choice of Qδ

The most natural choice for Qδ(z
−1) is a scalar transfer function q(z−1) times the identity matrix (with

dimension (n × n) for the scheme depicted in Fig 2 and (r × r) for the scheme depicted in Fig 3). With
h(z−1) first order (2) we distinguish two cases (see for example [24, 31]):

1. If ζ < 1 a Dahlin controller is appropriate and q(z−1) would be chosen as

q(z−1) =

(

1 − β

1 − βz−1

)(

1 − αz−1

1 − α

) (

1 + ζ

1 + ζz−1

)

(28)

with β a tuning parameter.

2. If ζ > 1 the controller (28) would be unstable and a more appropriate choice would be

q(z−1) =

(

1 − β

1 − βz−1

)(

1 − αz−1

1 − α

)(

1 + ζ

ζ + z−1

)

(29)

Our contention is that if the dynamics of the plant are simple, then designs for constrained systems
should be based on design strategies for unconstrained systems. Thus we refer the reader to the modal
designs in (for example) [8, 13, 33] for a more detailed discussion on choice of Qδ(z

−1). Where necessary,
the transformation (9) should be exploited. However we note the following:

• If an IMC is designed for step output disturbances, it may give unacceptable response for slow output
or input disturbances. Generally speaking good design requires a higher order filter Qδ(z

−1) to
ensure the appropriate sensitivities are small in closed loop. Most cross-directional control problems
are regulator problems (i.e. the output set-point is zero), but if a servo response it required it may
be better to incorporate such dynamics in the feedback path. See [31] for a discussion.

• Often such controllers are designed mode by mode, with faster action on the lower order modes
(where in general the model is better known), and slower action on the higher order modes. Provided
integral action is incorporated, this will have no effect on the implicit steady state cost (13). However
in [33] high gain proportional action is used in place of integral action.

2.4 Feedback round the nonlinear block

It is well-known that for anti-windup schemes where the non-linear element is saturation, better response
can be obtained by incorporating a feedback term around the non-linearity [41]. The natural generalisa-
tion of this to our case is depicted in Fig 4 with Qb(z

−1) strictly proper. The control law can be described
as:

δ̂(t) = ΦT
r y(t) − z−kh(z−1)Σrµ(t)

δ̂q(t) = Qf (z−1)δ̂(t) − Qb(z
−1)Σrµ(t)

µ(t) = arg min
µ

∣

∣

∣

∣

∣

∣
Σrµ + δ̂q(t)

∣

∣

∣

∣

∣

∣
such that Ψrµ ∈ U

u(t) = Ψrµ(t) (30)
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Figure 4: IMC in modal form with feedback around the non-linear element. This structure was used for
the simulations.

Once again we consider two conditions:

• Without the constraint u(t) ∈ U (and under the assumption Σr has full rank) this gives the solution

u(t) = Ψrµ(t)

µ(t) = −Σ−1
r

(

I − Qb(z
−1)

)−1
Qf (z−1)δ̂(t)

δ̂(t) = ΦT
r y(t) − z−kh(z−1)Σrµ(t) (31)

• In steady state

uss = Ψrµss

µss = arg min
u

∣

∣

∣

∣

∣

∣
(I − Qb(1)) Σrµ + Qf (1)δ̂ss

∣

∣

∣

∣

∣

∣
such that Ψrµ ∈ U

δ̂ss = ΦT
r yss − Σrµss (32)

In order to ensure equivalence with the previous case (Fig 3) under these two conditions, it is sufficient
that Qf (1) is some scalar times the identity and

Qb(z
−1) = I − Qf (z−1)

[

Qδ(z
−1)

]−1
(33)

For example if we choose

Qf (z−1) = λQδ(z
−1) + (1 − λ)Qδ(0) (34)

for some scalar λ then Qb(z
−1) is guaranteed strictly proper. The choice of λ (in the context of a

saturating non-linearity) is discussed in [41].

2.5 Choice of non-linear function

So far we have not specified the choice of norm on the non-linear function. The standard choice would
be a 2-norm, which results in a quadratic program. But as we have separated the non-linearity from the
dynamics it is straightforward to introduce any other choice of norm, without changing the dynamics away
from the constraints. In particular both l1 norm [7] and l∞ norm [11] criteria have been recommended
for certain cross-directional problems. Either may be substituted in this scheme, resulting in a linear
program. Such choices should be motivated by the required steady state performance.

Similarly we may choose to weight each mode differently in the cost function. For example, it may be
preferred to weight low order modes (where in general the model is better known) more heavily than high
order modes.

In [38, 36] the authors propose adding a barrier to the steady state calculation in MPC. The barrier has
a fixed weighting and prevents actuator constraint violation. Such a barrier may also be included in the
non-linear function. It has the effect of ensuring the inputs lie on the interior of the constraint set, while
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a limit is put on the associated performance degradation by the duality gap. Such optimization problems
may be solved efficiently via modified interior point algorithms [36].

Finally in [18] a modified steady state criterion is proposed that is robust to model mismatch. It may
also be incorporated into the non-linear function. The associated optimization is then usually a conic
program.

2.6 Rate constraints

So far we have only considered static constraints on the maximum and minimum values of the actuators
(10) as well as their (static) bending constraints (11). Sometimes it is desirable to limit the actuator slew
rate

ũmin ≤ ui(t) − ui(t − 1) ≤ ũmax (35)

Such constraints may be introduced to the control by replacing the condition Ψrµ ∈ U in, for example,
(30) with the condition

Ψrµ ∈ U and ũmin + [Ψrµ(t − 1)]i ≤ [Ψrµ]i ≤ ũmax + [Ψrµ(t − 1)]i (36)

The rate constraints may be satisfied more elegantly by including a first order filter after the non-linearity
(see Fig 5)

u(t) = qs(z
−1)Ψrµ(t)

qs(z
−1) =

1 − ρ

1 − ρz−1
(37)

Then by convexity it follows immediately that the rate constraints will be satisfied (and all other con-
straints preserved) provided

1 − ρ ≤
min (ũmax,−ũmin)

umax − umin
(38)

−

+

−

+

δ̂(t)

δ̂q(t) u(t) y(t)
NL Plant

µ(t)
qs(z

−1)

ΦT
r

Qf(z
−1)

Qb(z
−1)

Ψr

Σr

z−kh(z−1)

Figure 5: IMC with automatic rate constraint satisfaction.

3 Simulation and implementation

3.1 Simulation results

Consider a cross-directional plant model in the form of (1) and (2) with m = 101 and n = 501, the integer
delay term k = 4 and parameters α = 0.95 and ζ = 2. For the purposes of this simulation, we assume the
true interaction matrix is given by B and an estimate of the interaction matrix is denoted by B̂ (they
are both truncated sinc functions - see [37]). The profiles across the strip for a single actuator u51 are
shown in Fig 6 for both B and B̂. To give some idea of the sensitivity to model mismatch, Fig 7 shows
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Figure 6: The cross-directional profiles for both B (solid) and B̂ (dashed) with u51 = 1. Note that B̂ is
a slightly stretched version of B.
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Figure 7: Steady-state output variation for a step cross-directional disturbance. Both unconstrained
(dashed) and constrained (solid) responses are shown. Note that after r ≈ 47 the variation (with uncon-
strained response) becomes very large. Tuning parameter values β = 0.2 and λ = 0.5 were chosen for both
cases.

the mean output variation for a range of modes (r’s) in the unconstrained case. It was found that for
r > 47, the steady-state variation became very large.

The disturbance term d(t) was constructed as follows. Let e(t) ∈ R
n be a zero-mean coloured Gaussian

noise sequence with spatial covariance

E [ei(t)ej(t)] = 0.9|i−j| 0.01

0.81
(39)

Then d(t) is given by,

d(t) =
0.01

0.8

1 − 0.2z−1

1 − 0.99z−1
e(t) (40)

Note that once created, this disturbance was fixed and used for each simulation.

Constraints on the actuators are present in the form of (10) and (11) with umin = −1, umax = 1,
ūmin = −0.5 and ūmax = 0.5.

We introduce the following measure, which we term the cumulative output variation, to distinguish
between different controller designs,

ȳ =

N2
∑

i=N1

‖y(i)‖2
2 (41)

where N1 ≤ N2 are integers. In what follows we fix N1 = 200 and N2 = 1000.

Consider the controller design from Fig 4. We choose a control structure for Qδ(z
−1) as given by (29)

and consider a range of choices for β - from β = 0 through to β = 0.6 in steps of 0.1. The feedback
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term Qb(z
−1) is given by (33) with Qf (z−1) given by (34). We consider a range of choices for λ - namely

λ = 0, λ = 0.5 and λ = 1. As a further alternative we also consider the choice given by (71) which we
term (with some abuse of notation) the minimum variance structure. The number of modes was chosen
at r = 40. The cumulative output variation ȳ for this range of β’s and λ’s are shown in Table 1.

λ/β 0 0.1 0.2 0.3 0.4 0.5 0.6
0 1.6069 1.6065 1.6071 1.6090 1.6130 1.6205 1.6334

0.5 1.6118 1.6090 1.6082 1.6093 1.6130 1.6205 1.6333
1 1.9166 1.7769 1.6813 1.6310 1.6154 1.6195 1.6329

MV 1.6069 1.6065 1.6072 1.6091 1.6131 1.6206 1.6334

Table 1: Cumulative output variation measure ȳ for different parameter values and controller structure.
The values shown have been scaled by 104.

Fig 8 shows the profile across the strip at t = 845. Both open and closed loop responses are shown. For
the closed loop response 40 modes were controlled (r = 40) and the tuning parameters β and λ were set
to 0.2 and 0.5 respectively.
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Output profile position.

Figure 8: Cross-directional profile for t = 845 in both closed loop (solid) and open loop (dotted). In the
closed loop case 40 modes were controlled (r = 40) and tuning parameter values β = 0.2 and λ = 0.5 were
chosen.

With the same values of β and λ, consider two choices for r - namely r = 13 and r = 40. The smaller
value of r = 13 was selected as the largest r such that input constraints are not violated. Fig 9 shows
the output variation at each time interval for both choices of r. The cumulative output variation for the
case r = 13 was ȳ = 3.6785e + 04 (more than double that for r = 40 given in Table 1).

As a final comparison, we considered a related optimisation problem to that in (30) which uses a barrier
function with fixed weighting term ν = 1, to represent the constraint set U. The associated optimisation
problem appears as,

µ(ν) = arg min
µ

‖Σrµ + δ̂q(t)‖ − ν
M
∑

i=1

ln(bi − {AΨrµ}i) (42)

where {AΨrµ}i is the i’th element of Aµ and A and b represent the constraints on the inputs. In the
limit as ν → 0, the solution to (42) coincides with the solution to that in (30). We chose β = 0.2 and the
minimum variance structure with r = 40 and ν = 1. Fig 10 shows a comparison of actuator profiles for
ν = 1 and ν = 0, while Fig 11 shows a comparison of the bending actuator profiles for ν = 1 and ν = 0.
Note in both cases, the profile for ν = 1 is away from the constraints.

3.2 Discussion of computation

Efficient interior point algorithms [25, 26] and active set algorithms [2] have been tailored for the control
of cross-directional variations using model predictive control. Both reported approaches exploit the sparse
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Figure 9: This figure shows the output variation over the simulation period. Three cases are shown: no
controller (dotted), r = 13 (dashed) and r = 40 (solid). Tuning parameter values β = 0.2 and λ = 0.5
were chosen.

structure that arises if robustness considerations are ignored. As we have argued (and others have argued
elsewhere) it is necessary to attenuate control action at higher modes. This may be achieved either using
equality constraints (setting action on high modes to zero) or including appropriate weighting in the cost
function (and removing integral action at high modes). The former approach may reduce the dimension
of the Hessian, but with either approach the Hessian loses sparseness. Nevertheless, it is quite practical
to solve the optimisation problems required for the control structures proposed in this paper in real time;
in particular, as there is no receding horizon, the dimension of the Hessian is no greater than the number
of actuators.

To solve the optimisation problem in the simulations we used K. Schittkowski’s dual-active-set method
written in Fortran (from http://64.238.116.66/aemdesign/download-ffsqp/qld.f, see also [23] and
references therein). The software was implemented via the Matlab interface for the simulation example in
Section 3.1, which includes a maximum of 40 modes and has 400 constraints. The worst case computation
time on a Pentium IV, 1.8GHz machine was 9.5ms with a mean computation time of 3.8ms.

As a comparison, we also used a modified version of the OOQP package from Gertz and Wright, which
uses a primal-dual interior-point algorithm (see http://www.cs.wisc.edu/ swright/ooqp/). For this
application the algorithm was somewhat slower, with a worst case computation time of 95ms and a mean
computation time of 78ms. Note that by changing a few lines of code, we could also solve the weighted
barrier alternative (42) for any value of ν > 0.

These results are an indicator of what might be achievable on an industrial problem. Performance is
dictated by a number of factors including choice of hardware and software, the size and density of the
interaction matrix B, the form of the constraints (including equality constraints) and the number of
active constraints. Since the resultant Hessian is dense for this case, we would usually expect active set
methods to be faster than interior point methods (see for example [34] for a discussion). Both active set
and interior point methods can be made considerably more efficient by exploiting the specific problem
structure. The following discussion is restricted to interior point algorithms (see also [39]).

Interior-point methods typically involve the solution of a system of linear equations at each iteration. For
problem (30) this system appears as,

[

ΣT
r Σr LT

L −D

]

[

∆µ ∆z
]

=
[

g1 g2

]

(43)

where D is a positive definite diagonal matrix and z is associated with the Lagrange multipliers for the
inequality constraints Lµ ≤ b. Equation (43) can be reduced to the normal equation form by eliminating
∆z, resulting in a positive definite system,

[

ΣT
r Σr + LT D−1L

]

∆µ = g1 + LT D−1g2 (44)

Equation (43) can be factored using a sparse LU-factorisation - see e.g. the MA27, MA47 and MA57
packages from the Harwell library (http://hsl.rl.ac.uk/).
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Figure 10: Input profiles for ν = 0 and ν = 1. 40 modes were controlled (r = 40) and the minimum
variance structure was chosen.
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Figure 11: Bending input profiles for ν = 0 and ν = 1. 40 modes were controlled (r = 40) and the
minimum variance structure was chosen.

Equation (44) may be factored using a Cholesky factorisation, but care must be taken near the constraint
boundaries since D will include large terms in this case. Wright [40] offers a modified Cholesky factori-
sation which remains stable under these circumstances. In terms of floating-point-operations (flops), the
Cholesky factorisation costs r3/3 flops, where r is the number of modes. However, the matrix multipli-
cation to obtain LT D−1L is O(rM2) flops, where M is the number of constraints. Hence the normal
equation form (44) may well be expensive even when r is small.

4 Relation to MPC

We have argued here and elsewhere [17, 37] that when the plant behaviour is well-known it may be
advantageous to design a constrained controller. The usual approach for cross-directional control is to
design an MPC (e.g. [17, 27, 7, 21]). In this paper we have proposed a modification to an unconstrained
IMC structure, based on [22]. In particular we propose that IMC design considerations should be applied
to the constrained case. But it is possible to view the resultant controller as an MPC. The relation
between IMC and one-step horizon MPC has been explored in the unconstrained case (e.g. [14]). In
[32] it is argued that one-step horizon MPC is equivalent to IMC with saturating anti-windup in only
a limited number of cases. This becomes a matter of definition: if the anti-windup is allowed to have
a more general non-linearity then the equivalence class becomes larger. In the same paper [32] it is
argued that single step horizon MPC is adequate for plants with simple dynamics (in particular where
the plant without delay is non-minimum phase). This was also argued in [17], but may equally be viewed
as an argument for the control structure proposed in the current paper. In what follows we draw some
connections between the proposed scheme and MPC.
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4.1 One step horizon MPC

Suppose we wish to implement a control law that minimises the one-step horizon cost (c.f. [6])

u(t) = arg min
u(t)

E
{

∣

∣

∣

∣p1(z
−1)ΦT

r ŷ(t + k)
∣

∣

∣

∣

2

2
+

∣

∣

∣

∣p2(z
−1)ΦT

r Bu(t)
∣

∣

∣

∣

2

2

}

such that u(t) ∈ U (45)

This is equivalent to finding

µ(t) = arg min
µ

(t)E
{

∣

∣

∣

∣p1(z
−1)η(t + k)

∣

∣

∣

∣

2

2
+

∣

∣

∣

∣p2(z
−1)Σrµ(t)

∣

∣

∣

∣

2

2

}

such that Ψrµ(t) ∈ U (46)

Suppose further we may partition

p1(z
−1)y(t + k) = f1(z

−1)e(t + k) + f2(z
−1)y(t) + f3(z

−1)Bu(t) (47)

with f1(z
−1) a polynomial of order k − 1. Then our control is equivalent to

µ(t) = arg min
µ(t)

{

∣

∣

∣

∣f2(z
−1)η(t) + f3(z

−1)Σrµ(t)
∣

∣

∣

∣

2

2
+

∣

∣

∣

∣p2(z
−1)Σrµ(t)

∣

∣

∣

∣

2

2

}

such that Ψrµ(t) ∈ U (48)

This is a quadratic program. Specifically

µ(t) = arg min
µ

{

µT ΣT
r Σrµ + 2gT

1 (t)Σrµ
}

such that Ψrµ(t) ∈ U (49)

with

g1(t) =
f2(z

−1)

f3(0) + p2(0)
η(t) +

f3(z
−1) − f3(0) + p2(z

−1) − p2(0)

f3(0) + p2(0)
Σrµ(t) (50)

With scalar filters

Qf (z−1) = qf (z−1)I

Qb(z
−1) = qb(z

−1)I (51)

the control of Fig 4 becomes

µ(t) = arg min
µ

∣

∣

∣

∣Σrµ + qf (z−1)η(t) − z−kqf (z−1)h(z−1)Σrµ(t) − qb(z
−1)Σrµ(t)

∣

∣

∣

∣

2

2
(52)

This is likewise a quadratic program

µ(t) = arg min
µ

{

µT ΣT
r Σrµ + 2gT

2 (t)Σrµ
}

such that Ψrµ(t) ∈ U (53)

with

g2(t) = qf (z−1)η(t) −
[

z−kqf (z−1)h(z−1) + qb(z
−1)

]

Σrµ(t) (54)

Equivalence follows immediately by equating the coefficients of g1(t) and g2(t). Specifically set

qf (z−1) =
f2(z

−1)

f3(0) + p2(0)

qb(z
−1) = −

(

f3(z
−1) − f3(0) + p2(z

−1) − p2(0) + z−kh(z−1)f2(z
−1)

f3(0) + p2(0)

)

(55)

Note that more general structures (directions) for u in (45) would require non-diagonal filters and changing
the non-linear element in Fig 4.
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4.2 Minimum variance control

Suppose our plant is given by (1) and (2) with

d(t) =
1 − γz−1

1 − z−1
e(t) (56)

Here e(t) is some zero mean noise with E
{

e(t)eT (t − k)
}

= 0 for k ≥ 1. Suppose we want the minimum
variance control

u(t) = arg min
u

E
{

∣

∣

∣

∣ΦT
r ŷ(t + k)

∣

∣

∣

∣

2

2

}

such that u(t) ∈ U (57)

We will distinguish the cases when the open-loop plant is minimum phase (ζ < 1) and when the open-loop
plant is non-minimum phase (ζ > 1). In both cases the analysis follows from the standard results for
unconstrained systems (for example [1]):

1. If ζ < 1 the unconstrained solution is the Dahlin controller [31]. With constraints, this gives the
control

µ(t) = arg min
µ

{

∣

∣

∣

∣

∣

∣

∣

∣

g(z−1)

c(z−1)
η(t) +

b(z−1)f(z−1)

c(z−1)
Σrµ

∣

∣

∣

∣

∣

∣

∣

∣

2

2

}

such that Ψrµ(t) ∈ U (58)

where the polynomials a(z−1), b(z−1) and c(z−1) are given by

a(z−1) = (1 − αz−1)(1 − z−1)

b(z−1) = (1 + ζz−1)(1 − z−1)

(

1 − α

1 + ζ

)

c(z−1) = (1 − αz−1)(1 − γz−1) (59)

and the polynomials f(z−1) and g(z−1) satisfy the Diophantine equation

c(z−1) = a(z−1)f(z−1) + z−kg(z−1) (60)

where f(z−1) has degree k − 1. This yields

(1 − z−1)f(z−1) = 1 − γz−1 − (1 − γ)z−k

g(z−1) = (1 − γ)(1 − αz−1) (61)

and

g(z−1)

c(z−1)
=

(

1 − γ

1 − γz−1

)

b(z−1)f(z−1)

c(z−1)
=

(

1 − α

1 − αz−1

)(

1 + ζz−1

1 + ζ

)[

1 − z−k

(

1 − γ

1 − γz−1

)]

(62)

This in turn gives

Qf (z−1) =

(

1 + ζ

1 − α

)(

1 − γ

1 − γz−1

)

I

Qb(z
−1) =

(

−(α + ζ)z−1

1 − αz−1

)

I (63)

It can be observed that this corresponds to

Qδ(z
−1) =

(

1 − αz−1

1 − α

)(

1 − γ

1 − γz−1

)(

1 + ζ

1 + ζz−1

)

I (64)

as in (28) with β = γ. The choice of Qf (z−1) and Qb(z
−1) corresponds to λ = β

β−α
in (34).
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2. If ζ > 1 the controller (64) would be unstable. Instead, if we split b(z−1) into

b−(z−1) = 1 + ζz−1

b+(z−1) = (1 − z−1)

(

1 − α

1 + ζ

)

(65)

the solution to (57) is given by

µ(t) = arg min
µ







∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

g̃(z−1)

c(z−1)
η(t) +

b+(z−1)f̃(z−1)

c(z−1)
Σrµ

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2







such that Ψrµ(t) ∈ U (66)

where f̃(z−1) and g̃(z−1) satisfy the Diophantine equation

c(z−1)b−∗(z−1) = a(z−1)f̃(z−1) + z−kb−(z−1)g̃(z−1) (67)

Here the degree of f̃(z−1) is the sum of k − 1 and the degree of b−∗(z−1). In our case

b−∗(z−1) = ζ + z−1 (68)

This yields

(1 − z−1)f̃(z−1) = (1 − γz−1)(ζ + z−1) − (1 − γ)(1 + ζz−1)z−k

g̃(z−1) = (1 − γ)(1 − αz−1) (69)

and

g̃(z−1)

c(z−1)
=

(

1 − γ

1 − γz−1

)

b+(z−1)f̃(z−1)

c(z−1)
=

(

1 − α

1 − αz−1

)[(

ζ + z−1

1 + ζ

)

− z−k

(

1 + ζz−1

1 + ζ

)(

1 − γ

1 − γz−1

)]

(70)

This in turn gives

Qf (z−1) =

(

1 + ζ−1

1 − α

)(

1 − γ

1 − γz−1

)

I

Qb(z
−1) =

(

−(α + ζ−1)z−1

1 − αz−1

)

I (71)

As before, it can be observed that this corresponds to

Qδ(z
−1) =

(

1 − αz−1

1 − α

)(

1 − γ

1 − γz−1

)(

1 + ζ

ζ + z−1

)

I (72)

as in (29) with β = γ.

5 Conclusion

It has become standard to address the cross-directional control problem by decomposing the inputs and
outputs into modes. For robust stability and performance it is necessary that the controller acts only on
a reduced number of these modes.

If the controller acts on a sufficiently small number of modes the actuators will automatically lie within
their constraints. But to maximise economic performance it may be necessary to include a greater
number of modes, requiring actuator constraints to be taken explicitly into account. We have shown that
in this case it is possible to guarantee optimal steady state performance with a modified IMC structure.
For the simple dynamics associated with most web processes this also gives good closed-loop dynamic
behaviour (with less simple dynamics introducing a receding horizon may have significant benefit). Thus
unconstrained control design techniques may be applied directly to the constrained control problem.

We have demonstrated such a control design with a simulation example. It illustrates that such a
controller may be easily implemented in real time, even on systems with fast sampling.
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