
ASIC and FPGA Implementation Strategies for Model
Predictive Control

Geoff Knagge, Adrian Wills, Adam Mills, Brett Ninness

Abstract— This paper considers the system architec-
ture and design issues for implementation of on-line
Model Predictive Control (MPC) in Field Programmable
Gate Arrays (FPGAs) and Application Specific Inte-
grated Circuits (ASICs). In particular, the computa-
tionally itensive tasks of fast matrix QR factorisation,
and subsequent sequential quadratic programming, are
addressed for control law computation. An important
aspect of this work is the study of appropriate data word-
lengths for various essential stages of the overall solution
strategy.

I. I NTRODUCTION

Model predictive control (MPC) techniques have
recently enjoyed an upsurge of interest within the
automatic control community, due to their ability to
handle non-linear systems and constraints on allow-
able control inputs and system states [15], [12].

The essential idea underpinning the method is that
a constrained optimisation problem is solved in order
to generate a required control action. Unfortunately,
the requirement for on-line solution of the optimi-
sation problem is a main impediment to widespread
implementation of the approach. As such, despite
the important attractive features of MPC, its use to
date has been largely restricted to chemical process
control problems that operate on sufficiently slow time
scales [15].

This paper is directed at this difficulty by detailing
methods for using specialised hardware that is capable
of fast solution of the associated optimisation prob-
lems. The hardware design is captured here via an
generalised architecture targeted at implementation in
a field programmable gate array (FPGA), or as part of
an Application Specific Integrated Circuit (ASIC).

Hardware designs supporting fast MPC solution
are currently generating increasing interest, and the
reader is referred to several other important contri-
butions on the topic [1], [11], [10]. The work here
is discriminated from these previous contributions by
paying particular attention to encompassing non-linear
systems, and considering the finer detail of appropriate
numerical precision.

All authors are with the School of Electrical
Engineering and Computer Science, University of Newcastle,
Callaghan, NSW, 2308, Australia. Corresponding author
adrian.wills@newcastle.edu.au

An essential aspect of the hardware design is the
consideration of trade-offs between data word size
and computation speed, versus numerical precision
and effectiveness of the computed control action.
Previous work by the authors has demonstrated an
implementation on a software programmed digital
signal processor (DSP) device [17]. However, DSPs
are typically restricted to standard, non-customisable,
floating point numerical systems.

The paper is organised into two main parts. Part I in-
cludes Sections II–V and is concerned with the broad
MPC algorithm. In this part, we identify numerical
operations that are key to the efficient implementation
of MPC in hardware. Part II of the paper is encom-
passed by Section VI, where these key numerical
operations are discussed in terms of their hardware
implementation.

II. N ONLINEAR MODEL PREDICTIVE CONTROL

Consider a system whose dynamic behaviour can
be described via a discrete-time nonlinear state-space
model

xk+1 = fk(xk, uk) (1)

where the statexk ∈ R
n, the inputuk ∈ R

m and the
functionfk(·, ·) ∈ R

n maps the current state and input
to the next statexk+1. It is assumed thatfk is twice
continuously differentiable in both the state and input
arguments, and thatfk(0, 0) = 0 for all k.

Given an initial state valuex1, control of the state
is desired over subsequent time intervals, to a target
region in the state space (for example the origin). As
a first step, observe that the model (1) may be used
to predict future state values over a any prediction
horizonN , based on an initial statex1 and future input
moves{u1, . . . , uN}. More precisely, if the current
statex1 is known, then the state trajectory is given by

x2 = f1(x1, u1), . . . , xN+1 = fN(xN , uN )

Therefore, the state at any time in the future is a
function of the initial statex1 and all the inputs
{u1, . . .}. Provided that the input has sufficient control
authority, it is possible to choose an input sequence

u = {u1, . . . , uN} (2)



that moves the initial statex1 towards a desired region,
e.g. the origin. This aim is typically achieved by
minimising a cost function

V (u) =

N
∑

k=1

xT
k+1Qxk+1 + uT

k Ruk (3)

whereQ ∈ R
n×n is assumed to be a positive semi-

definite matrix used to penalise state-movements about
the origin, andR is assumed to be a positive definite
matrix that penalises input movements from the origin.

In addition to minimising this cost, a key benefit
of the MPC approach is that physical limits on the
system inputs and states can also be directly included
into the optimisation problem. More precisely, if the
constraints are describe viac(u) ≤ 0 where c(·) :
R

Nm → R
nc , then the MPC optimisation problem

becomes

u
⋆ = argmin

u

VN (u) s.t. c(u) ≤ 0. (4)

III. SOLVING THE MPC PROBLEM

In order to implement the MPC algorithm, it is
necessary to solve non-convex optimisation problems
of the type in (4) online. This, in general, is a
difficult task. Amongst the many approaches used to
solve these types of problems, Sequential Quadratic
Programming (SQP) methods are very competitive [2].
This approach is discussed below, with a view to
highlighting some of the computationally demanding
numerical operations, which are the subject of the
remainder of this paper.

The SQP approach to solving (4) is as follows (see
e.g. Ch. 18 in [13]). In a first step the cost function
and constraints are replaced with local approxima-
tions, which lead to a Quadratic Programming (QP)
subproblem

p
⋆ = arg min

p
p

T
∇uL(u, λ) +

1

2
p

T
∇

2
u
L(u, λ)p

s.t. c(u) + p
T
∇uc(u) ≤ 0 (5)

where∇u and ∇2
u

refer to the operation of taking
first and second order derivatives, respectively, and the
Lagrangian functionL is defined as

L(u, λ) = V (u) + λT c(u). (6)

Computing the Hessian∇2
u
L(u, λ) of the Lagrangian

function is usually computationally intensive. One
common approach to alleviate this problem is to
update an approximate Hessian at each iteration of
the method (such as the BFGS method - see Ch. 18
in [13]). However, if the sum-of-squares formulation
in (3) is exploited, then (3) can be expressed as

V (u) = eT (u)e(u) (7)

wheree is a column vector and is defined as

eT (u) =
[

(Q1/2x2)
T , · · · , (Q1/2xN+1)

T ,′

(R1/2u1)
T , · · · , (R1/2uN )T

]

. (8)

Therefore, the Hessian of the Lagrangian is given by

∇2
u
L(u, λ) = JT (u)J(u) + S(u) (9)

where J(u) = ∇ue(u) is the Jacobian matrix ofe
andS(u) is defined as

S(u) =





N(n+m)
∑

k=1

ek(u)∇2
u
ek(u)



 +

nc
∑

i=1

λi∇
2
u
ci(u)

(10)

whereci(·) refers to thei’th element inc(·). From
(10), it can be seen that part of the Hessian depends on
terms that are scaled byek(u). However, as the state
approaches the originek(u) → 0 (via assumptions on
(1)) and we therefore these terms in the Hessian cal-
culation can be neglected (this is a standard approach
for nonlinear least squares - see Ch. 10 in [4]). This
results in the following Hessian approximation

∇2
u
L(u, λ) ≈ JT (u)J(u) +

nc
∑

i=1

λi∇
2
u
ci(u).

The Jacobian term is assumed to be available and it
remains to approximate the second order derivatives
of the constraints. This can be achieved via the BFGS
approach (see Chs. 8–9 in [4]), but we have modified
the update to ensure that the approximation is positive
semi-definite (note that the Lagrange multipliers will
be maintained as non-negative numbers). This latter
requirement implies that the full Hessian approxima-
tion is positive definite sinceJT (u)J(u) is positive
definite by construction; recall thatR is assumed
positive definite.

Once the QP subproblem in (5) is solved forp⋆

with associated Lagrange multipliersλ⋆, a second
stage of the (line-search) SQP approach tries to find
a suitable step-lengthα such thatu + αp⋆ reduces a
merit function, which typically usesλ⋆ as part of a
penalty term. For this purpose, the well known one-
sidedℓ1 merit function is used - see Ch. 18 in [13].

The above SQP approach has been implemented
on a standard 2GHz Laptop for the purposes of
controlling an inverted pendulum apparatus. The
prediction horizon in that case wasN = 60
and sampling interval was25msec. Both input and
state constraints are present in the formulation and
a video that demonstrates this can be found at
http://sigpromu.org/mpc.



A. Key Numerical Operations

From the above approach, the key numerical oper-
ations that need to be performed on-line are:

1) Evaluate the costV (u) and constraintsc(u);
2) Compute Jacobians∇ue(u) and∇uc(u);
3) Compute an approximation to∇2

u
L(u, λ);

4) Solve the QP subproblem in (5);
5) Evaluate a merit function;

It is the experience of the authors that items 2–4
require the vast majority of computational effort. In the
next section we discuss the QP subproblem solution,
which leads to a discussion on items 2–3.

IV. QUADRATIC PROGRAMMING SUBPROBLEM

Direct online QP methods are of primary inter-
est due to the flexibility they offer. The two most
commonly used variants are active-set and interior-
point methods, and robust implementations of both
methods are available. However, for time-critical on-
line optimisation it is often necessary to adapt such
tools in order to exploit problem structure.

In light of this and with knowledge of the types
of QP problems we encounter, we have implemented
an active-set method based on the work of [6], [14].
While this method requires a positive definite Hessian
matrix H , as discussed in Section III, it does not
require a primal feasible initial point and this greatly
simplifies the algorithm [17].

For the purposes of discussion, consider the follow-
ing QP problem

p⋆ = arg min
p

1

2
pT Hp + 2gT p, s.t. Ap ≤ b

which corresponds to (5) with

H = ∇2
u
L(u, λ), g = ∇uL(u, λ)

A = ∇uc(u), b = −c(u)

wherep ∈ R
Nm and A ∈ R

nc×Nm. The algorithm
starts with the unconstrained solution (−H−1g), each
subsequent iteration adds a violated constraint, if
any, to the active-set of constraints and then solves
an equality constrained problem, where the equality
constraints are those listed in the active-set. An already
active constraint may also be dropped if it is no
longer needed (i.e. the associated Lagrange multiplier
is negative).

The method maintains two matricesZ andU such
thatZZT = H−1 andZT Aa = U , where the columns
of Aa hold the normals to the active constraints and
U is an upper triangular matrix. The implementation
uses Givens rotations (see Section VI-B) to update
the matricesZ andU in a numerically robust fashion.
If there are no more constraints in violation then the
algorithm terminates and the solution is optimal.

The key points of interest are:

• The need for a fast and numerically robust means
to compute an initialZ matrix that satisfies
ZZT = H−1 (discussed in Section V);

• The need for a numerically fast and stable Givens
implementation for updatingZ and U when
adding or dropping a constraint from the active-
set (discussed in Section VI-B).

V. COMPUTING Z

Recall that the Hessian matrix under consideration
has the structure

∇2
u
L(u, λ) ≈ JT (u)J(u) +

nc
∑

i=1

λi∇
2
u
ci(u)

where J(u) is the Jacobian matrix ofe(u) in (8).
By focusing on theJT (u)J(u) term of the above
Hessian, and neglecting the latter term for ease of
exposition, the Jacobian can be straightforwardly ex-
pressed as

J(u) =

















































Q1/2 ∂x2
∂uT

1

0 · · · 0

Q1/2 ∂x3
∂uT

1

Q1/2 ∂x3
∂uT

2

· · · 0

.

.

.

.

.

.

Q1/2 ∂xN+1

∂uT
1

Q1/2 ∂xN+1

∂uT
2

· · · Q1/2 ∂xN+1

∂uT
N

R1/2 0 · · · 0

.

.

.

.

.

.

0 · · · 0 R1/2

















































(11)

where the recursion for state derivatives can be ex-
ploited :

∂xk+1

∂uT
j

=
∂fk(xk, uk)

∂xT
k

∂xk

∂uT
j

+
∂fk(xk, uk)

∂uT
k

∂uk

∂uT
j

(12)

for j = 0, . . . , k. By computing the QR factorisation
(see [7]) ofJ

QR = J(u) (13)

whereQ is an orthonormal matrix andR is upper
triangular, it is possible to express the Hessian matrix
as

H = JT (u)J(u) = RTQTQR = RTR. (14)

Therefore, identifyingZ = R−1 gives the property
that

ZZT = R−1R−T = (RTR)−1 = H−1. (15)

The important feature is thatR is upper triangular and
quite easily inverted to giveZ. However, much of the
computation effort involves the QR factorisation of a
potentially large Jacobian matrix, as discussed in the
following section.



VI. MPC HARDWARE SOLUTION

The MPC approach presented above is applicable to
a wide range of control problems, with many variables
that will affect a particular implementation and the
optimisations that can be found. These include the
prediction horizon and number and type of constraints
in the MPC problem, the required speed and precision
of the calculation, and the allowable size and power
consumption of the circuit.

To address a wide range of configurations, it is
necessary to develop a set of alternate implementation
strategies and scalable building blocks. For a given
problem configuration, the most appropriate methods
can be applied to a generalised architecture.

Figure 1 summarises such an architecture for the
implementation of the active set method. This consists
of a small number of memories and simple paral-
lel arithmetic elements, which can be carefully co-
ordinated by a state machine to perform the algorithm
in an efficient manner. As a scalable architecture, it can
be reconfigured to meet the requirements of a specific
application.

Parallel

Multiplier Array


Parallel Givens

Rotation Array


Matrix

Memory 1


Matrix

Memory 2


Registers


data_in


Control Unit


data_out


1/x Calculator Array


Fig. 1. Simplified depiction of an architecture that uses parellelism
to implement the active set method.

The efficient implementation of MPC techniques is
challenging, requiring a large amount of intensive pro-
cessing in an efficient manner to maximise throughput.
It also requires the handling of non-trivial operations
such as square-roots, divisions, and specialised Givens
rotations.

These will be examined in the following sections,
beginning with Givens rotations and Householder re-
flections, which are key parts of the active-set algo-
rithm (Section IV) and the computation ofZ (Sec-
tion V).

A. QR Factorisation

The application of Givens rotations and House-
holder reflections are the two main methods for com-
puting the QR factorisation [7]. Generally, House-
holder reflections are suited to the case of zeroing
many entries in a vector (which is useful in the case of
computingZ), while Givens rotations are more suited

to zeroing out selected entries in a vector (which is
useful in the active-set algorithm).

Fast QR factorisation in hardware has been explored
in the literature, with a broad range of implemen-
tation features. Many implementations are based on
the COrdinate Rotation DIgital Computer (CORDIC)
algorithm (see e.g. [16]), both Givens [5], [8] and
Householder [9].

Of particular interest here is the scaled and de-
coupled Givens rotation discussed in [3]. In that
algorithm, the square root and division operations are
minimised by decoupling the numerator and denom-
inator calculations and applying a scaling factor to
ensure numerical stability. This type of approach will
be adopted here and is discussed in the next section.

B. Givens Rotations

The active-set algorithm mentioned in Section IV is
heavily dependant on the use of rotations to maintain
an upper triangular matrixU . On each iteration of the
algorithm, either

• A constraint is added to the right of the triangular
matrix, requiring the new column (constraint) to
be rotated to meet the upper-triangular require-
ment, or

• A constraint is removed from anywhere in the
matrix, requiring columns to the right to be
adjusted by rotating the lowermost element.

For either case, the calculation of a Given’s rotation

of

[

a

b

]

results in a Given’s matrix

G =

[

a√
a2+b2

b√
a2+b2

−b√
a2+b2

a√
a2+b2

]

. (16)

However, by isolating the denominators, and an initial

diagonalK =

[

1 0
0 1

]

, it is possible to express this

as

G = K̂− 1
2 Ĝ (17)

G =

[

aK2,2 bK1,1

−b a

]

(18)

K̂ =

[

K̂1 0

0 K̂2

]

(19)

K̂1 = K1,1K2,2

(

K2,2a
2 + K1,1b

2
)

(20)

K̂2 = K2,2a
2 + K1,1b

2. (21)

The expressions (18,19) involve only multiplication
and addition operations, which may be computed
relatively quickly in a hardware implementation.

To obtain the original value ofG, reciprocal square
roots need to applied to findK− 1

2 , however this
operation may be delayed until a convenient point



in the algorithm. By using such a technique on a
QR decomposition of a matrixA, the decomposition
becomes

A =
(

QK− 1
2

)(

K− 1
2 R

)

= QK−1R. (22)

In the case of the active set algorithm, we have
observed that continually delaying the application of
K− 1

2 , until later operations in the algorithm, results in
the eventual cancellation of all suchK− 1

2 elements.
Consequently, only the original diagonals ofK are
required in the modified algorithm, and the square-
root need not be calculated.

C. Householder Reflections

Householder reflections, denoted here by the matrix
P ∈ R

n×n, transforms a vectorx ∈ R
n into a new

vector y = Px = [α, 0, . . . , 0] ∈ R
n [7]. That is,

it zeros out all but the first element of a vector. By
successively applying such reflections to the columns
of a matrixA ∈ R

n×m, it is possible to obtain the QR
factorisation. The Householder reflection vectorv can
be calculated fromx as follows.

function: [v, β] = house(x)
n = length(x), σ = x(2 : n)T x(2 : n)

v =

[

1
x(2 : n)

]

if (σ = 0), β = 0

else
µ =

√

x(1)2 + σ

if (x(1) ≤ 0), v(1) = x(1) − µ

else, v(1) = −σ
x(1) + µ

end

β =
2v(1)2

σ + v(1)2
, v = v

v(1)
end

The main operations in calculatingv are multiplication
and addition. However, operations of square-root and
divide are more difficult to implement in hardware and
cannot be eliminated from the Householder method, as
was done for the Givens method.
In Section V it was seen that the Jacobian matrix
has a specific structure, which can be exploited to
approximately halve the computational effort. By ob-
serving the locations of the zeros in the Jacobian
matrix, it is possible to compute the Householder
vector more efficiently and also apply the reflection
in an economical manner. Specifically, computation
of the Householder vectorv requires the norm ofx,
and the non-zero elements ofx have a predetermined
structure that can be utilised to skip the zero entries.
In addition, the Householder vector will also have a
number of zeros that can be exploited in the inner
product calculation when applying the Householder
reflection to the matrixA. Similar gains can be made

for the outer product term of applying a Householder
reflection.

D. Use of Parallelism

Significant speed increases may be achieved in an
FPGA or ASIC implementation through the exploita-
tion of parallelism that is not possible on typical
DSP devices. A simple example, outlined in Figure
2, is the simultaneous calculation of some or all of
the multiplications in a vector inner product. Such
operations are required in the active-set method during
the inclusion of new constraints to the set, and during
the Givens rotations and Householder reflections.

a x b


a
1
 b
1


a x b


a
2
 b
2


a x b


a
3
 b
3


a x b


a
4
 b
4


a x b


a
5
 b
5


a x b


a
6
 b
6


a x b


a
7
 b
7


a x b


a
8
 b
8


+


a*b


Fig. 2. Conceptual example of the use of parallelism. The product
between a1×8 a 8×1 vector can be found in only 2 steps, instead
of the 8 accumulate and add steps required in a serial approach.

Further parallel optimisations are less evident, but may
be found by careful examination of the algorithm. For
example, Figure 3 demonstrates a typical method of
performing a column rotation in a DSP, where pairs
of cells are chosen for Givens rotations and one result
depends on the result from the previous calculation.
Combined with the post-rotation adjustment of af-
fected matrices, this represents a significant processing
time when done sequentially.

0

0

0


0

0

0


0

0

0

0


0

0

0

0

0


0

0

0

0

0

0
Rotate


Rotate

Rotate


Rotate

Rotate


Rotate

Rotate


0

0

0

0

0

0


0


Fig. 3. Typical rotation method using a serial processing approach,
requiring up ton iterations.

However, Figure 4 reveals that, by selecting the
rotation points carefully, multiple rotations may be
performed in parallel. Hence, a column rotation that
previously requiredn iterations of single rotations,
only requireslog2 n iterations of parallel rotations.
Furthermore, the post-rotation adjustment of the af-
fected matrices may also be performed in parallel,
greatly reducing the execution time. This technique
can reduce execution time by 50% to 75%, with the
effect more significant on larger sized problems (e.g.
prediction horizon of 25) that cannot normally be
implemented by a DSP.
Parallelism may also be applied to minimise latency
by calculating certain data before it is required. This
includes the reciprocal of data elements, and the
implied inverse of the rotated matrix.



0


0


0


0


Rotate


Rotate

Rotate

Rotate


Rotate

Rotate
 0


0

0


0

0

0


Rotate

0

0

0

0

0

0

0


Fig. 4. By using parallel hardware and selecting rotation points
carefully, the time required can be reduced tolog2 n iterations.

E. Numerical representation

The MPC algorithm may be implemented using a
floating point numeric system, customised to max-
imise efficiency of implementation. This is used in
favour over a fixed point system, to allow a larger
dynamic range to be represented with a minimal
number of bits. This in turn decreases circuit size
and power consumption, and increases the speed of
functions such as multiplication and division. While
floating point systems require additional complexity
for the rescaling of the mantissa to the[1..2) range
after an operation, this is not dissimilar in complexity
to the range checking and shifting required in a fixed
point system.
In an attempt to gauge the required data word size
for the MPC algorithm, we compared an IEEE-754
floating-point (denoted as single-precision, using 23
mantissa bits) implementation of the active-set al-
gorithm with that of reduced mantissa sizes. The
active-set algorithm comprises the most work in the
algorithm, and is most affected by these optimisations.
In particular, we recorded several hundred QP’s that
arise in the computation of a control action of the
inverted pendulum apparatus described at the end of
Section III; it has 61 variables and 242 constraints.
These QP’s were solved using a single-precision ver-
sion of the active-set method, and reduced precision
versions of the active-set algorithm. The results in
Table I demonstrate that a degradation in precision
occurs as expected, and at the same time acceptable
results are obtained even when using a mantissa with
as low as 12-bits. However, this result will vary,
depending on the characteristics of an individual ap-
plication.

Bits 22 20 18 16 14 12 10
Max 5.2e-3 2.2e-2 1.8e-2 6.2e-2 2.9e-1 8.9e-1 5.2

Mean 5.7e-4 2.4e-3 5.1e-3 1.9e-2 8.4e-2 2.9e-1 1.5
St. Dev. 1.2e-3 5.0e-3 4.8e-3 1.8e-2 8.3e-2 2.8e-1 1.6

TABLE I

MAXIMUM , MEAN , AND STANDARD DEVIATION OF THE ERROR

‖xs − xr‖2/‖xs‖2 , BETWEEN THE IEEE-754

SINGLE-PRECISION ACTIVE-SET RESULTxs AND THE REDUCED

PRECISION RESULTxr .

VII. C ONCLUSION

This paper has described an architecture and imple-
mentation strategies for performing MPC on FPGA
and ASIC devices, by taking advantage of parallelism
and numerical customisation that is possible on such
devices. This is done with the aim of providing an
efficient and cost effective means for physically real-
ising high performance MPC controllers. Further work
is underway to build and test various configurations of
this design.

REFERENCES

[1] L.G. Bleris, P.D. Vouzis, M.G. Arnold, and M.V. Kothare.
A Co-Processor FPGA Platform for the Implementation of
Real-Time Model Predictive Control. InProceedings of
the 2006 American Control Conference, pages 1912–1917,
Minneapolis, Minnesota, USA, June 14-16 2006.

[2] P.T. Boggs and J.W. Tolle. Sequential quadratic programming.
Acta Numerica, 4:1–51, 1996.

[3] L.M. Davis. Scaled and decoupled cholesky and qr decom-
positions with application to spherical mimo detection.IEEE
Wireless Communications and Networking,, 1:326–331, March
2003.

[4] J.E. Dennis and B. Schnabel R.Numerical Methods for Un-
constrained Optimization and Nonlinear Equations. Prentice
Hall, 1983.

[5] K. Dickson, Z. Liu, and J. V. McCanny. Programmable
processor design for givens rotations based applications.Proc.
4th IEEE Workshop on Sensor Array and Multichannel Pro-
cessing, pages 84–87, 2006.

[6] D. Goldfarb and A. Idnani. A numerically stable dual method
for solving strictly convex quadratic programs.Mathematical
Programming, 27:1–33, 1983.

[7] G.H. Golub and C.F. Van Loan.Matrix Computations. The
John Hopkins University Press, 1996.

[8] J. Gotze. Parallel methods for iterative matrix decompositions.
Proc. IEEE International Symposium on Circuits and Systems,
1:232–235, June 1991.

[9] S.F. Hsiao and J.M. Delosme. Householder CORDIC Algo-
rithms. IEEE Transactions on Computers, 44(8):990–1001,
August 1995.

[10] T.A. Johansen, W. Jackson, R. Schreiber, and P. Tondel.
Hardware synthesis of explicit model predictive controllers.
IEEE Transactions on Control System Technology, 15(1):191–
197, January 2007.

[11] K.V. Ling, S.P. Yue, and J.M. Maciejowski. A FPGA Im-
plementation of Model Predictive Control. InProceedings
of the 2006 American Control Conference, pages 1930–1935,
Minneapolis, Minnesota, USA, June 14-16 2006.

[12] David Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M.
Scokaert. Constrained model predictive control:Stability and
optimality. Automatica, 36(6):789–814, 2000.

[13] J. Nocedal and S. Wright.Numerical Optimization. Springer-
Verlag, New York, 1999.

[14] M.J.D. Powell. On the Quadratic Programming Algorithm
of Goldfarb and Idnani.Mathematical Programming Study,
25:46–61, 1985.

[15] S. Joe Qin and T.A. Badgwell. A survey of industrial model
predictive control technology.Control Engineering Practice,
11:733–764, 2003.

[16] J.E. Volder. The Birth of CORDIC.Journal of VLSI Signal
Processing, 25(3):101–105, June 2000.

[17] A.G. Wills, D. Bates, A.J. Fleming, B. Ninness, and S.O.R.
Moheimani. Model predictive control applied to constraint
handling in active noise and vibration control.IEEE Transac-
tions on Control Systems Technology, 16(1):3–12, 2008.


