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Abstract

We consider a class of continuous-time cooperative systems evolving on the positive orthant Rn
+. We show that if the origin is

globally attractive, then it is also globally stable and, furthermore, there exists an unbounded invariant manifold where trajectories
strictly decay. This leads to a small-gain type condition which is sufficient for global asymptotic stability (GAS) of the origin.
We establish the following connection to large-scale interconnections of (integral) input-to-state stable (ISS) subsystems: If the
cooperative system is (integral) ISS, and arises as a comparison system associated with a large-scale interconnection of (i)ISS
systems, then the composite nominal system is also (i)ISS. We provide a criterion in terms of a Lyapunov function for (integral)
input-to-state stability of the comparison system. Furthermore, we show that if a small-gain condition holds then the classes of
systems participating in the large-scale interconnection are restricted in the sense that certain iISS systems cannot occur. More-
over, this small-gain condition is essentially the same as the one obtained previously by Dashkovskiy et al. [7, 8] for large-scale
interconnections of ISS systems.
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1. Introduction

Consider n≥ 1 control systems of the form

Σi : ẋi = fi(x1, . . . ,xn,ui), i = 1, . . . ,n, (1)

where xi ∈ RNi , ui ∈ RMi , N = ∑Ni, M = ∑Mi, fi : RN+Mi →
RNi is locally Lipschitz with fi(0) = 0, satisfying dissipative
integral input-to-state stability estimates

∇Vi(xi) fi(x,ui)≤−αi(Vi(xi))+ ∑
j 6=i

γi j(Vj(x j))+ γiu(‖ui‖) ,

(2)
for all x j ∈ RN j , j = 1, . . . ,n, and ui ∈ RMi , where each Vi is
assumed to be continuously differentiable, such that

α i(xi)≤Vi(xi)≤ α i(xi) , for all xi ∈ RNi , (3)

for some K∞ functions α i,α i, and the functions αi,γi j,γiu
are assumed to be locally Lipschitz continuous. The func-
tions γi j and γiu are called gains and assumed to be of class
G = K ∪{0}, i.e., they are each either class K functions or
zero. Throughout we assume that γii = 0. The functions αi are
assumed to be positive definite.
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If in addition a function αi is in class K∞, then the corre-
sponding systems Σi is in fact input-to-state stable (ISS). It is
known that an arbitrary composition of ISS systems is ISS, pro-
vided a small-gain condition is satisfied [7, 8]. Here we will
treat the more general iISS case [24].

There exist several conditions in the literature [4, 12, 6] for
the stability of the composite system

Σ : ẋ = f (x,u) , (4)

with x =
(
xT

1 , . . . ,xT
n
)T , u =

(
uT

1 , . . . ,uT
n
)T , and f (x,u) =(

f1(x,u1)T , . . . , fn(x,un)T
)T , arising by treating (Σ1, . . . ,Σn) as

one single system under different forms of structural assump-
tions on the interconnection graph structure. Central to all exist-
ing results that are based on the input-to-state stability concept
are growth and scaling conditions, which can be quite intricate.

In general neither cascades nor feedback loops of iISS sys-
tems yield stable systems. Ito [12] gave stability conditions for
feedback loops of two iISS systems in terms of a small-gain
condition and scaling conditions, together with a recipe for the
construction of a Lyapunov function for the composite system.
Chaillet and Angeli [6] have treated the case of cascaded iISS
systems in detail. Here the only necessary condition is a scaling
condition. Similar scaling conditions have also been used be-
fore by Arcak et al. [4] to design robust output-feedback control
laws.

In this paper, we use a comparison principle approach in-
volving a vector Lyapunov function, which naturally arises as
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the vector of the Lyapunov functions of the subsystems. The
resulting comparison system is a positive, cooperative system.
We study its dynamics and geometric implications of global
asymptotic stability (GAS), which on the converse side lead us
to a small-gain type condition. We find other sufficient con-
ditions in terms of Lyapunov functions that indicate when the
comparison system is not only GAS but also (i)ISS. The small-
gain condition implies the existence of an unbounded path in
a decay set. We show that the existence of such a path is in-
compatible with certain classes of supply rates, which could be
thought of as “pure” iISS.

For the sake of a simpler exposition in this paper, the right-
hand sides of estimates (2) (the so-called supply rates) are not
given in terms of norms of the states but in terms of Lyapunov
functions of the states. This will ease notation dramatically.
Moreover, we only treat the time-invariant case, but the time-
varying case is a straightforward extension.

The idea of using a comparison system to deduce stability
properties of a nominal system or “the object of inquiry” is not
new. An excellent recent overview of the available results in
comparison theory can be found in [20]. Our approach is to
aggregate several types of existing results: Comparison tech-
niques as detailed by Lakshmikantham and Leela [15, 16] and
results on monotone dynamical systems by Smith [22] for the
comparison system induced by the interconnection topology, as
well as a monotone selection theorem [21, 8].

We use a nonlinear matrix-vector type formulation, by defin-
ing operators A,Γ and G : Rn

+→ Rn
+ per

A(v)i = αi(vi) , Γ(v)i = ∑
j 6=i

γi j(v j) , G(w)i = γiu(wi) , (5)

for i = 1, . . . ,n. The general idea is that stability properties of
the comparison system

v̇ =−A(v)+Γ(v)+G(w), v,w ∈ Rn
+ , (6)

induced by the right-hand sides of the dissipation inequali-
ties (2) translate into the same stability properties of the com-
posite system (4).

This paper is organized as follows. In Section 2 we recall
some necessary definitions, in particular different formulations
of input-to-state stability and related properties. Section 3 con-
tains the main results of the paper, starting with comparison
principles for (i)ISS and GAS of large-scale systems in Sec-
tion 3.1. This is followed by topological, i.e., geometrical, im-
plications of GAS of the origin with respect to the autonomous
part of (6), namely an existence result for an invariant decay set
in Section 3.2. This naturally leads to a small-gain condition,
which in a strengthened form is used in a sufficiency criterion
in Section 3.3. Here we also see that one of the implications
of the small-gain condition, which is the existence of an un-
bounded path in the decay set, has implications for the possible
supply pairs. Section 4 concludes the paper.

2. Preliminaries

In this section we establish some necessary notation. The
positive orthant Rn

+ in Rn is the set {x ∈ Rn : xi ≥ 0∀i}. By

the boundary of Rn
+, also denoted ∂Rn

+, we mean the set {s ∈
Rn

+ : ∃i : si = 0}. In Rn the open ball of radius r > 0 centered
at x is denoted by B(x,r). The p-norm on Rn is denoted by
‖ · ‖p, where p is usually omitted in the case p = 2. The max-
norm is denoted as ‖ · ‖∞. The inner product on Rn is denoted
by 〈x,y〉 = xT y for x,y ∈ Rn. The sphere with respect to the
1-norm, intersected with the positive orthant Rn

+, is an (n−1)-
simplex and denoted by

Sr := {x ∈ Rn
+ : ‖x‖1 = r} .

The order on Rn is given by x≤ y if and only if xi ≤ yi for all
i; x < y if and only if x ≤ y and x 6= y; and x� y if and only if
xi < yi for all i. Notably, the condition x � y is not the same as
x < y but denotes the following statement:

“There exists at least one component i, such that
xi < yi.”

In other words, x � y means: Either x < y or x and y are not
comparable. In particular, we will use the notation M � 0 for
operators M :Rn

+→Rn to denote that M(v)� 0 for all v ∈Rn
+,

v 6= 0. A set Ω ⊂ Rn
+ is called radially unbounded if for any

v ∈ Rn
+, there exists a w ∈Ω satisfying v≤ w.

The comparison function classes K and K∞ are, respec-
tively, the sets of continuous functions {γ : R+ → R+ ,γ(0) =
0,γ is strictly increasing} and {γ ∈K : γ is unbounded}. For
short we write class G = K ∪ {0} to include the zero func-
tion. The class of continuous positive definite functions α :
R+→ R+ is denoted by PD . A function β : R2

+→ R+ is of
class K L if for fixed t ≥ 0 the function β (·, t) is of class K
and for fixed s ≥ 0 the function β (s, ·) is non-increasing with
limt→∞ β (s, t) = 0.

A finite directed graph G is a pair (V,E) of a set of vertices
V and directed edges E ⊂V ×V . Usually we will identify V =
{1, . . . ,n} for some n ≥ 1. A path of length k is a sequence
of edges ((i1, i2),(i2, i3), . . . ,(ik−1, ik) with (i j, i j+1) ∈ E for all
j = 1, . . . ,k. A cycle is a path with i1 = ik, i.e., the initial and
terminal vertices coincide. A graph is strongly connected if for
any pair of vertices i, j there is a path from vertex i to vertex
j and a path from vertex j to vertex i. The adjacency matrix
AG = (ai j) ∈ {0,1}n×n of G is defined as

ai j =

{
1 if e ji ∈ E
0 otherwise.

The matrix AG is irreducible iff G is strongly connected and
reducible otherwise [5].

Similarly, any n×n matrix Γ = (γi j) induces a directed graph
GΓ, where we set V = {1, . . . ,n} and define E ⊂V ×V per

( j, i) ∈ E ⇐⇒ γi j 6= 0 .

Note that ( j, i) ∈ E does not automatically imply (i, j) ∈ E, i.e.,
edges defined this way are directed. We will call Γ irreducible,
if GΓ is strongly connected and reducible otherwise. In particu-
lar, we will think of the nonlinear operator Γ defined in (5) as a
matrix with entries that are functions, Γ = (γi j), for that matter.
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Note that this directed graph notion is compatible with the
signal flow diagram of the network of interconnected sys-
tems (1) and corresponds to the graph of the gain matrix of
the network, i.e., the matrix Γ = (γi j) consisting of the gains γi j
in (2).

2.1. Input-to-state type stability concepts

We consider a system

ẋ = f (x,u) (7)

satisfying the usual Carathéodory assumptions on uniqueness
and local existence of solutions, with x ∈ RN and u ∈ RM .
Let V : RN → R+ be a continuously differentiable function for
which there exist two K∞ functions α,α , such that the estimate

α(‖x‖)≤V (x)≤ α(‖x‖) (8)

holds for all x ∈ RN . We write V̇ for 〈∇V (x), f (x,u)〉, the
derivative of V along trajectories of (7). Such a function V is
called a Lyapunov function candidate.

If there exist α,γ ∈K∞, such that the dissipation inequality

V̇ ≤−α(‖x‖)+ γ(‖u‖) (9)

holds, then system (7) is called input-to-state stable (ISS) (see
e.g., [23]) and V is termed an ISS Lyapunov function (in the dis-
sipative formulation). Other equivalent formulations of ISS ex-
ist, and they include trajectory estimates, asymptotic gain prop-
erties combined with local stability [28, 27] or input-to-state
dynamical stability (ISDS) [10, 9]. A related, but not equiva-
lent, concept is differential input-to-state stability [3]. An ex-
cellent overview of the “big picture” on ISS can be found in
[25]. In addition there exist at least two more equivalent formu-
lations involving Lyapunov functions: ISDS, and the follow-
ing so-called implication form. The implication form requires
a Lyapunov function candidate and a gain γ ∈K such that the
implication

‖x‖> γ(‖u‖) =⇒ V̇ < 0

holds for all x ∈ RN and u ∈ RM . Observe that in all formula-
tions qualitatively, due to (8), we could have replaced ‖x‖ with
V (x). Doing so will simplify our notation significantly.

For brevity we say a system of the form

ẋ = f (x), x ∈ RN (10)

is GAS, if the origin is globally asymptotically stable, i.e.,
for all x ∈ RN , the solution Φ(t;x) exists for all t ≥ 0,
limt→∞ ‖Φ(t;x)‖ = 0 and for every ε > 0 there exists a δ > 0
such that ‖x‖ < δ implies ‖Φ(t;x)‖ < ε for all t ≥ 0. Recall
(e.g., from [19, Proposition 2.5] that GAS is equivalent to the
existence of a class-K L function β , such that

‖Φ(t;x)‖ ≤ β (‖x‖, t), for all t ≥ 0.

Similarly, we say system (7) is 0-GAS if it is GAS for u≡ 0. It
is well known (e.g., [29, Corollary 2]) that if f in (10) is locally

Lipschitz then GAS is equivalent to the existence of a smooth
Lyapunov function V : RN → R+ satisfying (8) and

V̇ ≤−V (x) .

It is the dissipative formulation of ISS (9) which extends eas-
ily to a more general case. Given functions α,γ : R+ → R+
such that for a Lyapunov function candidate the dissipation es-
timate

V̇ ≤−α(V (x))+ γ(‖u‖) (11)

holds for all x ∈ RN and u ∈ RM , system (7) is termed

• input-to-state stable (ISS) if α ∈ K∞ and γ ∈
K . Observe the slightly weaker requirement
on γ which is equivalent to the definition given
above and is preferred by some authors.

• integral input-to-state stable (iISS) if α ∈PD
and γ ∈K . In particular, this includes ISS as a
special case.

The pair (α,γ) is called a supply pair, the function γ is called
the supply function or gain. The function α is termed the decay
rate.

Remark 2.1 The difference between ISS and iISS may seem
very subtle at first. The ISS property might be interpreted as an
L∞ to L∞ stability property, but it is also equivalent to a form
of L2 to L2 stability. In contrast, iISS is more of an L2 to L∞

stability property [25]: It’s equivalent trajectory formulation
is that there exists a K L function β and functions α,γ ∈K
such that for all x0 ∈ RN , all t ≥ 0, and all locally integrable
inputs u : R+→ RM ,

α(‖x(t;x0)‖)≤ β (‖x0‖, t)+
∫ t

0
γ(‖u(s)‖)ds . (12)

In the literature, iISS as above in the dissipative Lyapunov
formulation is often defined with γ ∈K , but sometimes also
using supply pairs where γ is of class K∞ [4, 12, 6, 13, 1, 25, 2].
Clearly, it is not a restriction to assume γ ∈K∞, but it raises the
question if there are possible equivalent formulations of ISS
using supply pairs with γ ∈K \K∞ and α /∈K∞. This leads
us to the following alternative characterization of ISS which has
not previously appeared in the literature.

Proposition 2.2 Let a system

Σ : ẋ = f (x,u)

be given and suppose there exist α,α ∈K∞ and a C 1 function
V satisfying (8). Assume there exist functions α,γ ∈K such
that

〈∇V (x), f (x,u)〉 ≤ −α(V (x))+ γ(‖u‖) .

If
supα ≥ supγ

then the system Σ is ISS.

The proof of this result closely follows the lines of the result
in [23].
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Proof. It suffices to consider the case when α /∈K∞, for other-
wise Σ is ISS by definition. First let us assume that supα ≥
C supγ for some C > 1. Let q ∈ K∞ be smooth and define
ρ(r) =

∫ r
0 q(s)ds. Clearly W := ρ ◦V is smooth, proper, and

positive definite; take α1 = ρ ◦ α and α1 = ρ ◦ α . Then
Ẇ ≤ q(V (x))(−α(V (x))+ γ(‖u‖)).

Now either γ(‖u‖) < 1/C · α(V (x)) and Ẇ ≤ −(1 −
1/C)α(V (x))q(V (x)). Or otherwise γ(‖u‖) ∈ [0,supα). Note
that α is invertible on [0,supα). Hence with Θ(r) := α−1(C ·
γ(r)) for r ≥ 0 we have V (x) ≤ Θ(‖u‖) and therefore Ẇ ≤
−q(V (x))α(V (x))+q◦Θ(‖u‖)γ(‖u‖). The first term is of class
K∞, which gives us an ISS estimate in dissipative form.

Now assume that supα = supγ . Then we can show that
Σ is ISS by showing that the ISS Lyapunov implication form
holds true as follows: The inverse of α exists on [0,supα) =
[0,supγ), and it is easy to see that α−1 ◦ γ ∈ K∞, and so is
α−1( 1

2 γ(·)). Now if V (x) > α−1( 1
2 γ(‖u‖)) =: γ̃(‖u‖), then

V̇ ≤ −α(V (x)) + γ(‖u‖) ≤ − 1
2 α(V (x)) < 0, which is the de-

sired Lyapunov implication form of ISS, cf. [8, 27].

Observe that any function α ∈ PD for which
liminfs→∞ α(s) > 0 can be bounded from below by a K
function. Hence by the previous result we obtain a characteri-
zation stating when an iISS system is in fact ISS.

Corollary 2.3 Let a system

Σ : ẋ = f (x,u)

be given together with α,α ∈K∞ and C 1 Lyapunov function
V satisfying (8). Assume there exist functions α ∈PD and
γ ∈K such that

〈∇V (x), f (x,u)〉 ≤ −α(V (x))+ γ(‖u‖) ,

for all x ∈ RN , u ∈ RM . If

liminf
s→∞

α(s)≥ supγ

then the system Σ is ISS.

3. Stability of the comparison system

Consider the comparison system arising from (2), i.e.,

v̇ = M(v), v ∈ Rn
+ , (13)

where M is a nonlinear operator defined by M =−A+Γ, i.e.,

(M(v))i =−αi(vi)+ ∑
j 6=i

γi j(v j) .

Throughout we assume that the functions αi,γi j,γiu are locally
Lipschitz, guaranteeing existence and uniqueness of solutions
for (13) and also for the applicability of converse Lyapunov
theorems (where locally Lipschitz right-hand sides guarantee
robustness of K L -estimates, see [29]). We denote solutions
of (13) by φ : R+×Rn → Rn, i.e., a solution of (13) at time
t ≥ 0 from an initial condition v ∈ Rn is denoted by φ(t,v).

The operator M is by definition quasimonotone nondecreas-
ing (cf. Lakshmikantham and Leela, [17]) which is the same as
type K (cf. Smith, [22]), i.e., for each i, M(v)i ≤M(u)i for any
points v and u that satisfy v ≤ u and vi = ui. Observe that the
origin is an equilibrium point of (13).
Remark 3.1 Under the assumption that M is C 1 we have

∂Mi

∂v j
(v)≥ 0, for all i 6= j,v ∈ Rn

+ ,

which implies that system (13) is a cooperative system in the
sense of [22, p.33].

Remark 3.2 (Metzler matrices) For the case that M is linear
the resulting cooperative system has been widely studied in the
literature. Here it can be assumed that M = (mi j) is given as an
n×n real matrix with entries satisfying mi j ≥ 0 whenever i 6= j.
Such a matrix is called a Metzler matrix. We gather some well
known facts from [5]:

The matrix M can be written as M =−αI +P, where α ≥ 0
is a real number, I is the identity matrix, and P is a nonnegative
matrix. The origin is globally asymptotically stable with respect
to the linear system

v̇ = Mv , v ∈ Rn
+ , (14)

if and only if the spectral abscissa of M, i.e.,

a(M) := max{Reλ : λ is an eigenvalue of M} ,

is negative. An equivalent condition is to require that the spec-
tral radius of P,

r(P) := max{|λ | : λ is an eigenvalue of P} ,

satisfies
r(P) < α . (15)

The next result is simple but vital for the applicability of re-
sults cited from the literature of monotone systems, since it al-
lows us to consider systems evolving on Rn

+, which is convex
but not open in Rn. When M is differentiable, that is all αi and
γi j are differentiable, we will assume one sided limits when the
derivative of M on the boundary of Rn

+ in Rn is under consider-
ation.
Lemma 3.3 Solutions of system (13) starting in the positive
orthant Rn

+ evolve, as long as they exist, in this orthant.

Proof. It suffices to consider what happens to trajectories hit-
ting the boundaries of Rn

+. Let φ(·,v0) denote a solution and
assume φ(t,v0) = b, where bi = 0 for at least one i, i.e., the
solution hits the boundary of Rn

+ at time t.
For each i such that bi = 0 we have for the ith component of

d
ds

∣∣
s=tφ(s,v0) = M(b) that (M(b))i = −αi(0)+ ∑ j 6=i γi j(b j) ≥

0, i.e., the vector field does not point outside the positive or-
thant. This shows that the positive orthant is invariant for sys-
tem (13).

An important fact regarding solutions of the comparison sys-
tem (13) concerns the ordering of solutions. We quote the fol-
lowing result from [22, Proposition 1.1, p.32]:
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Proposition 3.4 (Ordering of solutions) Let u0,v0 ∈ Rn
+, then

on the maximal interval J = [0,T ) where both solutions of (13)
exist, the following implications hold for t ∈ J,

1. if u0 ≤ v0 then φ(t,u0)≤ φ(t,v0);
2. if u0 < v0 then φ(t,u0) < φ(t,v0); and
3. if u0� v0 then φ(t,u0)� φ(t,v0).

3.1. Comparison principles

The comparison principle [15, Theorem 4.1.2, p.268] or [20,
Theorem 7.7.1] states that stability properties of the trivial so-
lution of (13) carry over to the trivial solution of system (4):

Proposition 3.5 (Comparison principle) If the origin is glob-
ally asymptotically stable (GAS) with respect to (13), then sys-
tem (4) is 0-GAS (i.e., the origin is GAS for (4) when u≡ 0).

Drawing upon essentially the same ideas, we can now state
and prove a comparison principle for (integral) input-to-state
stability.

Given u ∈ RM with M = ∑Mi and w ∈ Rn
+, we write G(w)

for the vector

G(w) =

γ1u(w1)
...

γnu(wn)

 ,

as well as, with slight abuse of notation,

G(u) =

γ1u(‖u1‖)
...

γnu(‖un‖)

 ,

with ui ∈RMi and u =
(
uT

1 , . . . ,uT
n
)T . So the comparison system

with inputs is

v̇ = M(v)+G(w) , v,w ∈ Rn
+ . (16)

Theorem 3.6 (An (i)ISS comparison principle) Let subsys-
tems (1) and positive definite and decrescent Lyapunov func-
tions Vi, i = 1, . . . ,n, satisfying (3) as well as the dissipation
estimates (2) be given. Let M =−A+Γ and G be given by (5).

Then (integral) input-to-state stability of the comparison sys-
tem (16) from w to v implies the same corresponding stability
property for the system (4).

Moreover, if the smooth (integral) ISS Lyapunov function
for (16) is denoted by L, then the corresponding (integral)
ISS Lyapunov function for the nominal system can be taken as
V (x) = L

(
(V1(x1), . . . ,Vn(xn))T

)
.

Proof. Rewriting the prerequisites in vector notation and de-
noting

V (x) := (V1(x1), . . . ,Vn(xn))T

we have along trajectories x(t) of (4) for the derivative of V ,

d
dt

[V (x(t))] =
(
〈∇V1(x1(t)), f1(x,u1)〉, . . .

. . . ,〈∇Vn(xn(t)), fn(x,un)〉
)T

≤M(V (x(t)))+G(u) .

(17)

By assumption there exists a smooth function L : Rn
+ → R+,

due to an ISS (respectively, iISS) converse Lyapunov theorem,
see [27], resp. [1], such that there exist two class K∞ functions
α,α , so that

α(‖v‖)≤ L(v)≤ α(‖v‖) , for all v ∈ Rn
+ ,

and there exist α ∈PD (α ∈K∞ in the ISS case) and γ ∈K
such that for all v,w ∈ Rn

+,

〈∇L(v),M(v)+G(w)〉 ≤ −α(‖x‖)+ γ(‖w‖) .

Now define V (x) := L(V (x)). Then we have

〈∇V (x), f (x,u)〉=
〈

∇L(V (x)),
(
〈∇V1(x1), f1(x,u1)〉, . . .

. . . ,∇Vn(xn), fn(x,un)〉
)T
〉

≤ 〈∇L(V ),M(V (x))+G(u)〉 ≤ −α(‖V (x)‖)+ γ(‖u‖) .

Using that Vi(xi) ≥ α i(‖xi‖), it is clear that the last inequality
implies a dissipative (integral) ISS estimate with smooth (i)ISS
Lyapunov function V = L◦V .

The previous result might seem obvious, but it has not been
formulated before in the literature. The difficulty in general
will, of course, be to prove that the comparison system is iISS
or ISS. A collection of sufficient conditions to deduce this will
be given in the following.

At this point is useful to draw attention to the following de-
viation from the linear theory: Linear systems of the form

ẋ = Ax+Bu , y = Cx+Du , x ∈ Rn , u ∈ Rm , y ∈ Rp ,

map bounded inputs to bounded outputs if and only if A is Hur-
witz. Or, equivalently, if and only if the origin is GAS for the
autonomous system ẋ = Ax. In fact, the above system is ISS
if and only if A is Hurwitz. One might conjecture that things
are similar for general cooperative systems, but this is not nec-
essarily so. The nonlinear (but also non-cooperative) example
discussed in [26] illustrates that 0-GAS is strictly weaker than
iISS. In particular, assumptions regardings bounds on the gradi-
ent of a Lyapunov function, as we impose in the sequel, cannot
be omitted.

So a useful question to ask is: What type of stability is
needed for system (13) in order to imply (integral) input-to-
state stability of system (16)?

The following result at least partially answers that question:
Theorem 3.7 Assume there exist α,α,α ∈K∞ and a smooth
function L : Rn

+→ R+, such that for all v ∈ Rn
+,

α(‖v‖)≤ L(v)≤ α(‖v‖) , and

〈∇L(v),M(v)〉 ≤ −α(v) .

Assume further that there exists a continuous function q :R+→
R+, q(s) > 0 for all s > 0, satisfying∫

∞

0
q(s)ds = ∞ (18)
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and
q(α(‖v‖)) · ‖∇L(v)‖ ≤ 1 , for all v ∈ Rn

+ . (19)

Then system (16) is integral ISS. Moreover, if q can be taken to
be nondecreasing, then system (16) is ISS.

Proof. Define W (v) := ρ(L(v)), where ρ ∈K∞ is defined by

ρ(r) =
∫ r

0
q(s)ds .

Clearly (ρ ◦α)(‖v‖) ≤W (v) ≤ (ρ ◦α)(‖v‖), so W is radially
unbounded and decrescent. For its derivative along solutions
of (16) we have

〈∇W (v),M(v)+G(w)〉= q(L(v)) · 〈∇L(v),M(v)+G(w)〉
≤ −α(‖v‖)q(α(‖v‖))

+q(α(‖v‖))‖∇L(v)‖‖G(w)‖
≤ −α̃(‖v‖)+‖G(w)‖ .

In the last inequality the function α̃ defined by α̃(s) :=
α(s)q(α(s)) is positive definite.

If q happens to be nondecreasing we have q(s) ≥ q(0) > 0
for all s ≥ 0 (since q(s) > 0 for s > 0 and by the fact that q
is nondecreasing), so we may instead take α̃(s) := q(0)α(s)≤
α(s)q(α(s)), which is a class K∞ function.

With γ(s) := maxi γiu(s) we have ‖G(w)‖ ≤ γ(‖w‖), so that
overall we obtain

〈∇W (v),M(v)+G(w)〉 ≤ −α̃(‖v‖)+ γ(‖w‖) , (20)

which is the desired (integral) ISS estimate.

As an immediate consequence, by bounding the gradient of
L by a constant, we obtain the following result:

Corollary 3.8 Assume there exist α,α,α ∈K∞ and a smooth
function L : Rn

+→ R+, such that for all v ∈ Rn
+,

α(‖v‖)≤ L(v)≤ α(‖v‖) , and

〈∇L(v),M(v)〉 ≤ −α(v) .

Assume further that there exists a constant C > 0, such that for
all v, ‖∇L(v)‖ ≤C. Then system (16) is ISS.

Proof. Apply Theorem 3.7 with q(s)≡ 1/C.

Similarly, a weaker bound on the gradient of L along with a
bound on α yields only iISS:

Corollary 3.9 Assume there exist α,α,α ∈K∞ and a smooth
function L : Rn

+→ R+, such that for all v ∈ Rn
+,

α(‖v‖)≤ L(v)≤ α(‖v‖) , and

〈∇L(v),M(v)〉 ≤ −α(v) .

Assume further that there exist constants C1 > 0,C2 ≥ 1, such
that for all v, ‖∇L(v)‖ ≤C1‖v‖ and, for all s > 0, C2α(s)≥ s.
Then system (16) is iISS.

Proof. Let q(s) = 1
C1C2·s for s > 1 and q(s) = 1

C1C2
for s ≤ 1.

Observe that q is a positive and continuous function defined on
R+. If ‖v‖> 1 then ‖∇L(v)‖q(α(‖v‖))≤ C1‖v‖

C1C2α(‖v‖) ≤ 1. Oth-

erwise, if ‖v‖≤ 1, then ‖∇L(v)‖q(α(‖v‖))≤ C1‖v‖
C1C2

≤ 1/C2≤ 1.
We have

∫
∞

0 q(s)ds≥ limr→∞
1

C1C2

∫ r
1 1/sds = ∞, so the func-

tion q satisfies the prerequisites of Theorem 3.7. As q is not
nondecreasing, we can only deduce iISS for system (16).

3.2. Order and topological implications of global asymptotic
stability

Scaling and growth conditions on the supply rates in [6] and
[12] as well as small-gain conditions [8] turn out to be closely
connected to the concept of decay sets [21]. We define the ith
decay set to be

Ωi := {v ∈ Rn
+ : (M(v))i < 0} . (21)

This is the domain where trajectories of the comparison sys-
tem (13) decrease in their ith component. Our next result states
that GAS of the origin implies that nontrivial solutions are lo-
cated in at least one Ωi at any given time. Recall that if the
comparison system (16) is (integral) ISS then necessarily the
origin is globally asymptotically stable (GAS) with respect to
the autonomous system (13).

Proposition 3.10 If the origin is GAS with respect to (13), then
the operator M satisfies

M(v)� 0, ∀v ∈ Rn
+,v 6= 0 . (22)

Proof. We argue by contradiction. Suppose there exists v0 > 0,
such that M(v0) ≥ 0. Firstly, M(v0) = 0 implies the existence
of an equilibrium at v0, contradicting GAS of the origin. So we
have M(v0) > 0. By GAS of the origin, system (13) is forward
complete. Since M(v0) > 0, there exists an ε > 0 such that
φ(t,v0) > v0 for all 0 < t ≤ ε . Denote v1 := φ(ε,v0) > v0.

Now let u0 > v0. Using the ordering of solutions, Propo-
sition 3.4, we have φ(t,u0) > φ(t,v0) > v0 for all 0 < t ≤ ε .
Denoting u1 := φ(ε,u0) > v1 > v0, we find φ(t + ε,u0) =
φ(t,u1) > u1 > u0 for 0 < t ≤ ε . Repeating the argument we
obtain

φ(t,u0) > u0, ∀t > 0,

contradicting GAS of the origin. This shows that there cannot
exist v0 ∈ Rn

+, v0 6= 0, such that M(v0) ≥ 0. In other words,
M(v)� 0 for all v ∈ Rn

+,v 6= 0.

The previous result shows that—provided that the origin is
GAS—every trajectory with respect to (13) has to be in one of
the Ωi sets at any given time. In other words,

n⋃
i=1

Ωi = Rn
+ \{0} .

In [7, 8] a condition similar to (22) has been recognized as
a general small-gain type condition, guaranteeing stability of
interconnections of ISS systems. For our purposes, inequal-
ity (22) can be interpreted in the following way: ‘For GAS of
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the origin with respect to (6) the weak small-gain condition (22)
is necessary.’ In general, however, (22) alone is not a sufficient
condition for GAS, as the following example illustrates.
Example 3.11 Let a cooperative system evolving on R2

+ be
given by

v̇ = M(v) =

− v1

1+ v3
1

+ v2

−v4
2

 .

The operator M satisfies M(v) � 0 for v 6= 0: If v2 6= 0, then
M(v)2 < 0 and if v2 = 0, then M(v)1 < 0. Yet it can be
shown that the origin is not globally asymptotically stable (e.g.,
the trajectory starting in (1,1)T grows unboundedly in the v1-
direction while its v2-component converges to zero).

Similarly to [7] we have the following result, which is
based on the Knaster-Kuratowski-Mazurkiewicz (KKM) prin-
ciple [14, 18, 11]:
Theorem 3.12 Assume M is such that (22) holds. Then for
each r > 0 there exists a v ∈ Rn

+, v� 0, ‖v‖ = r, such that
M(v)� 0. In other words, for all r > 0,

n⋂
i=1

Ωi∩Sr 6= /0.

The proof of this result is essentially the same as that of the
corresponding result in [7]. The previous result states that there
exists a decay set,

Ω� :=
n⋂

i=1

Ωi =
{

v ∈ Rn
+ : M(v)� 0

}
(23)

in which solutions decrease in all components, provided that
the origin is GAS. Two other decay sets of interest are

Ω≤ :=
{

v ∈ Rn
+ : M(v)≤ 0

}
and

Ω< :=
{

v ∈ Rn
+ : M(v) < 0

}
.

(24)

Recall that a set A is positively invariant if v ∈ A implies
φ(t,v) ∈ A for all t ≥ 0. Assuming that M in the right-hand
side of (13) is continuously differentiable, we have the follow-
ing invariance result for decay sets, cf. [22, Prop.2.1, p.34].
Proposition 3.13 Let M be given by (13) and assume that
αi,γi j ∈ C 1 for all i, j = 1, . . . ,n. Then the sets Ω�, Ω<, and
Ω≤ are positively invariant.

This result is quite useful for establishing global asymptotic
stability of the origin:
Lemma 3.14 Assume that M is differentiable, M � 0, and Ω�
is radially unbounded. Then the origin is globally asymptoti-
cally stable with respect to (13).

Proof. For every v0 ∈ Rn
+ there exists w� 0 such that w≥ v0,

and w∈Ω�. By Propositions 3.4 and 3.13 the trajectories start-
ing at v0 and w are related via 0≤ φ(t,v0)≤ φ(t,w) for all t ≥ 0.
The set Ω� is positively invariant, so φ(·,w) is strictly decreas-
ing in every component and bounded. Hence it converges to
a fixed point of M, and the only fixed point of M is the ori-
gin. Consequently also the trajectory φ(·,v0) converges to the
origin. This proves that the origin is globally attractive.

Now let ε > 0 be given. Choose an arbitrary r0 ∈ (0,ε] (this
step is only for compatibility with the following Lemma). Pick
w0 ∈ Ω� ∩ Sr0 and observe that it satisfies w0� 0. Hence we
may define

δ := sup{d ∈ R+ : ∀w ∈ Rn
+,w� w0 : ‖w‖ ≤ d} .

We have δ > 0, and ‖w‖ < δ implies w� w0. By the order-
ing of solutions this implies φ(t,w)� w0 for all t ≥ 0, hence
‖φ(t,w)‖1 ≤ ‖w0‖1 = r0 ≤ ε for all t ≥ 0. This proves stabil-
ity.

Lemma 3.15 Assume that M � 0 in a neighborhood of the ori-
gin. Then the origin is locally asymptotically stable with respect
to (13).

Proof. For small r > 0 we have due to Theorem 3.12 that
Ω�∩Sr 6= /0. Hence given ε > 0 we may pick r0 ∈ (0,ε] small
enough such that Ω�∩Sr 6= /0 for all 0 < r ≤ r0. Following the
second part of the proof of Lemma 3.14 we obtain stability. Lo-
cal attractivity also follows as in the proof of Lemma 3.14.

3.3. Small-gain conditions for the comparison system
The aim of a small-gain condition is to give an algebraic cri-

terion for global asymptotic stability of the origin. Our con-
dition will make use of Lemma 3.14, i.e., ensure that Ω� is
radially unbounded. Note, however, that this is conservative, in
the sense that it rules out certain types of subsystems in (1), see
Prop. 3.21.
Theorem 3.16 Consider the comparison system (13) with op-
erators Γ,A : Rn

+→ Rn
+. If there exist diagonal operators

• T : Rn
+→ Rn

+, T (v)i = τi(vi), τi ∈K∞ satisfying τi +αi ∈
K∞ and

• D : Rn
+→ Rn

+, D(v)i = vi +δi(vi), δi ∈K∞,

such that

D◦ (Γ+T )◦ (T +A)−1(v)� v, ∀v > 0, (25)

then the origin is GAS with respect to system (13).
Note that (T + A) is a diagonal operator with K∞ entries on

the diagonal, so its inverse is of the same shape. Moreover
the composite operator Γ̃ := (Γ+T )◦ (T +A)−1 is of the form
Γ̃(v)i = ∑ j γ̃i j(v j), where

γ̃i j =

{
τi ◦ (τi +αi)−1 if j = i,
γi j ◦ (τ j +α j)−1 otherwise,

and γ̃i j is of class K∞ for i = j, and of class K ∪{0} otherwise.
Remark 3.17 Given a locally Lipschitz continuous, positive
definite function α : R+ → R+, there always exists a function
τ ∈K∞, such that α + τ ∈K∞. To see this, simply note that
the right-hand side derivative D+α(r) := limh→0+

α(r+h)−α(r)
h

exists for all r ≥ 0 and is bounded on compact intervals. So for
arbitrary small ε > 0 we might take

τ(r) :=
∫ r

0
ε +max{0,−D+

α(s)}ds
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so that D+(α + τ)(r) > 0 for all r ≥ 0.
Thus, the hard part in applying Theorem 3.16 is to find a suit-

able operator D and to check the general small-gain condition,
which is essentially the same task as in [7, 8].

Proof of Theorem 3.16. It suffices to note that (25) or, equiva-
lently, D◦ Γ̃� id implies the existence of a component-wise un-
bounded path σ in Rn

+, parametrized by K∞ functions σi such
that Γ̃(σ(r))� σ(r) for all r > 0, cf. [8, Proposition 8.13]. Let
ρ(r) := (T +A)−1(σ(r)). In particular we have for r > 0,

Γ̃(σ(r)) = (Γ+T )◦ (T +A)−1(σ(r))� σ(r)
⇐⇒ (Γ+T )(ρ(r))� (T +A)(ρ(r))

⇐⇒ Γ(ρ(r))� A(ρ(r))
⇐⇒ M(ρ(r)) = (−A+Γ)(ρ(r))� 0 .

Observe that ρ is again a strictly increasing and component-
wise unbounded path in Rn

+ parametrized by K∞ functions.
Furthermore, ρ(r) ∈ Ω� for all r > 0 so that Ω� is radially
unbounded. By Lemma 3.14 it follows that the origin is GAS
with respect to (13).

The argument can be strengthened for strongly connected
networks in that we can omit the robustness term D. For tech-
nical reasons we have to assume that the network is strongly
connected via K∞ gains. By this we mean that Γ should be
irreducible (or, Γ can be decomposed into Γ = ΓU + ΓB where
ΓU consists of those γi j that are K∞ and is assumed to be irre-
ducible and ΓB consists of those γi j that are in K \K∞).

Theorem 3.18 Consider the comparison system (13) with op-
erators Γ,A : Rn

+ → Rn
+. Assume that Γ = (γi j) is irreducible

and γi j ∈K∞∪{0} for all i, j. If

M(v)� 0, for all v > 0 , (26)

then the origin is GAS with respect to system (13).

Proof. By Remark 3.17 there exists an operator T : Rn
+→ Rn

+,
T (v)i = τi(vi), τi ∈ K∞ satisfying τi + αi ∈ K∞. So we can
rewrite (26) as

M =−A+Γ� 0 ⇐⇒ (Γ+T )◦ (T +A)−1 =: Γ̃� id .

The operator Γ̃ is again of the form Γ̃ = (γ̃i j).
We have γ̃i j ∈K∞ ∪{0} and Γ̃ is irreducible. Now by [21,

Theorem 5.4] there exists a component-wise unbounded path σ

in Rn
+, parametrized by K∞ functions σi such that Γ̃(σ(r))�

σ(r) for all r > 0.
Similarly as in the proof of Theorem 3.16 it follows that there

exists a path ρ with strictly increasing and unbounded compo-
nent functions, such that M(ρ(r))� 0 for all r > 0, cf. [8, The-
orem 8.11] or [21, Theorem 5.5]. Again we conclude using
Lemma 3.14.

As an immediate consequence of the preceding results, we
have:

Corollary 3.19 Consider system (4) decomposed into subsys-
tems (1). Assume for each subsystem (1) there exists a Lyapunov
function Vi satisfying (3) as well as the dissipation inequal-
ity (2). Let Γ,A : Rn

+→ Rn
+ given by (5) and let M = −A + Γ.

Assume that either

1. there exist diagonal operators
(a) T :Rn

+→Rn
+, T (v)i = τi(vi), τi ∈K∞ satisfying τi +

αi ∈K∞ and
(b) D : Rn

+→ Rn
+, D(v)i = vi +δi(vi), δi ∈K∞,

such that (25) holds for all v > 0; or that
2. Γ = (γi j) is irreducible with γi j ∈K∞∪{0} for all i, j, and

that (26) holds for all v > 0.

Then system (4) is 0-GAS (i.e., the origin is GAS for (4) when
u≡ 0).

The above small-gain conditions are based on Lemma 3.14,
which requires a radially unbounded set Ω�. We will see in
the following example that the origin can be globally asymptot-
ically stable although Ω� is not radially unbounded (though it
is still at least unbounded in one coordinate direction).
Example 3.20 Let α1(s) = s/(1+s), which is of class K \K∞

with lims→∞ α1(s) = 1. Let γ12 ∈K∞, α2 ∈PD and consider
the system [

v̇1
v̇2

]
=
[
−α1(v1)+ γ12(v2)
−α2(v2)

]
=: M(v) ,

which may be interpreted as a comparison system of a cascade
of a GAS system driving an iISS system. By considering the
cases v2 = 0 and v2 > 0 it is clear that M � 0.

The origin is GAS for the v2-subsystem, and clearly for small
ε > 0 the compact set Aε = {v2 ∈R+ : v2 ≤ γ

−1
12 (1)−ε} will be

reached by any trajectory in finite time. The set Ω2 is the whole
of R2

+ without the v2-axis.
The set Ω1 is given by

Ω1 = {v ∈ R2
+ : v2 < γ

−1
12 (α1(v1))} ,

i.e., the region below the graph of γ
−1
12 ◦α1 ∈K \K∞, cf. Fig-

ure 1. Now using a domination argument as in Lemma 3.14

v2

v1

Ω!

γ−1
12 (1)

Ω1

Ω2

Figure 1: The sets Ω1,Ω2,Ω� in Example 3.20.

we prove that the origin is GAS for the composite system: Fix
some small ε > 0. Any trajectory will eventually enter Aε , by
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Prop. 3.13 it will then be dominated by a trajectory starting in
Ω� = Ω1∩Ω2. All trajectories in Ω� approach the origin, so
this proves global attractivity, and from Lemma 3.15 we have
local stability.

Clearly the small-gain type conditions impose some restric-
tions on the type of system under consideration. In fact, this
restriction affects the functions αi which constitute the operator
A, as we shall see next. In light of Proposition 2.2 this means
that some of the subsystems in the original interconnection sat-
isfy stronger stability properties than just iISS.

Proposition 3.21 Consider the comparison system (13) with
operators Γ,A : Rn

+→ Rn
+, A = diag(αi). If there exists a path

σ ∈K n
∞ such that M =−A+Γ satisfies

M(σ(r))� 0, for all r > 0 , (27)

then for all i such that there exists j with γi j 6= 0, the corre-
sponding function αi is bounded from below by a function of the
same class as γi j. In particular, if γi j ∈K∞ then αi is bounded
from below by (and hence can be assumed to be) a class K∞

function and if γi j ∈K \K∞ then at least liminfs→∞ αi(s) > 0.

Proof. By (27) we have αi(σi(r)) > ∑k 6=i γik(σk(r)) ≥
γi j(σ j(r)) for any j, all r > 0. Hence αi > γi j ◦σ j ◦σ

−1
i , where

γi j ◦σ j ◦σ
−1
i is a function of the same class as γi j. From here

the claim follows.

3.4. A remark on the construction of Lyapunov functions

From the results so far we have learned that iISS of the com-
parison system implies iISS of the large-scale interconnection.
Furthermore, a smooth Lyapunov function exists and it can be
constructed using the Lyapunov functions for the individual
subsystems.

The the ultimate goal would be to construct an inherently
smooth Lyapunov function for the large-scale interconnection,
one that also covers integral ISS subsystems. While this prob-
lem remains open, at least a partial result in this direction can
be achieved.

Despite the restriction imposed by the small-gain condition
(as it implies that some subsystems have to be “more stable”
in the sense of Proposition 3.21), the small-gain condition is
quite useful, as it allows the construction of at least a non-
smooth Lyapunov function for the composite system using the
approach detailed in [8]. To treat this case thoroughly, care has
to be taken when the derivative of the locally Lipschitz con-
tinuous Lyapunov function is considered at points where it is
not differentiable in the classical sense. For these details the
reader is referred to [8] where this issue has been dealt with us-
ing Clarke’s generalized derivatives. Here we only sketch the
procedure, assuming that derivatives exist where we take them:

Suppose there exists a K∞-path ρ : R+→ Rn
+, such that

M(ρ(r)) =−A(ρ(r))+Γ(ρ(r))� 0 , for all r > 0 .

Suppose further that the functions αi constituting A are of class
K∞ and hence invertible (with inverses again of class K∞).

We know that

V̇i ≤−αi(Vi(xi))+ ∑
j 6=i

γi j(Vj(x j)) , for all i = 1, . . . ,n .

If the vector V (x) :=
(
V1(x1), . . . ,Vn(xn)

)T is in Ωi for one par-
ticular i, then we have

V̇i ≤−αi(Vi(xi))+ ∑
j 6=i

γi j(Vj(x j)) < 0 .

In other words, the following implication holds:

Vi(xi)≥ α
−1
i

(
∑
j 6=i

γi j(Vj(x j))
)

=⇒ Vi < 0 .

Now define a function V (x) = maxi ρ
−1
i (Vi(xi)). It is straight

forward to check that V satisfies an estimate of the form (8).
Assume that for a given x we have V (x) = ρ

−1
i (Vi(xi)) for a

particular i. Then it follows that Vj(x j)≤ ρ j(V (x)) for all j. So
we have

α
−1
i

(
∑
j 6=i

γi j(Vj(x j))
)
≤ α

−1
i

(
∑
j 6=i

γi j(ρ j(V (x)))
)

< ρi(V (x)) = Vi(xi) ,

and hence

V̇ (x) = (ρ−1
i )′(Vi(xi))︸ ︷︷ ︸

>0

· V̇i︸︷︷︸
<0

< 0 ,

at least for all points of differentiability of ρ
−1
i , which is almost

everywhere.
The locally Lipschitz continuous Lyapunov function that we

have just constructed only serves to show GAS of the origin for
the composite system (4). However, if the sums of gains are ex-
tended by an external input, a slightly modified procedure still
works, leading to an ISS Lyapunov function for the composite
system [8].

4. Conclusions

In this work we have established stability criteria in terms
of Lyapunov functions for cooperative systems arising as com-
parison systems of large-scale interconnections of (integral) ISS
systems. Using a comparison theorem which says that the nom-
inal system satisfies essentially the same types stability proper-
ties as the comparison system, we provided several results for
stability of nonlinear large-scale systems.

Based on the geometric implications of global asymptotic
stability of the origin with respect to the comparison system,
we derived a small-gain type condition for stability and also
showed how this condition itself in general restricts the class of
systems to whose interconnection stability it applies.
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[8] Dashkovskiy, S. N., Rüffer, B. S., & Wirth, F. R. 2009. Small gain theorems
for large scale systems and construction of ISS Lyapunov functions. submit-
ted to SIAM Journal on Control and Optimization (SICON), Jan. Preprint
available at http://www.sigpromu.org.
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