Implementing the Belief Propagation
Algorithm in MATLAB

Bjorn S. Riiffer® Christopher M. Kellett*

Technical Report
Version as of November 13, 2008

We provide some example Matlab code as a supplement to the paper [6].
This technical report is not intended as a standalone introduction to the
belief propagation algorithm, but instead only aims to provide some technical
material, which didn’t fit into the paper.

1 Introduction

For an excellent introduction and mathematical treatise of modern iterative decoding
theory, we refer to [4]. Worth mentioning is also the survey paper [2] on factor graphs and
the sum-product algorithm, the superclass that contains belief propagation. This current
technical note provides Matlab code to implement the dynamical system formulation of
the belief propagation algorithm and a few related concepts, as detailed in [6]. More
conventional implementations —that is, from a coding perspective— exist and some are
publicly available [3].

The Matlab code examples detailed in this report can be found, along with the most
up-to-date version of this report itself, at [5].

Our presentation differs also in another aspect from the standard ones: Unlike the
information theory convention, where messages and codewords are represented by row
vectors, we throughout use column vectors as this is standard in dynamical systems. Of
course this does not lead to differences other than representational ones.

This report is organized as follows: In Section [2] we give a simple example on how
one can generate a very basic random parity-check matrix and compute a corresponding
generator matrix. Section [3| details the channel transmission and Section 4] provides
code to implement the belief propagation algorithm as a dynamical system. The output
trajectories obtained using this Matlab code can then be plotted using the routine in

*School of Electrical Engineering and Computer Science, The University of Newcastle, Australia,
Bjoern.Rueffer@Newcastle.edu.au, Chris.Kellett@newcastle.edu.au

Section 5] In Section [6] we provide a more advanced method for generating parity-check
matrices with prescribed degree distribution.

2 Parity-Check and generator matrices

A parity-check matrix is any matrix H € F;"*". Throughout we assume that n = m+k,
n,m,k > 0 and that H has full rank, i.e., rank m. If H does not have full rank, then
rows can be removed until it does, thereby increasing k and decreasing m accordingly.

To generate a parity-check matrix for a repeat-n code in canonical form, one could
use the following Matlab statement:

n=10; m=n—1; H=spalloc(n—1,n,2x(n—1)); for i=1:n—1, H(%,5)=1; H(i,i+1)=1; end‘

A simple random parity-check matrix can be generated using the code in Listing [I], and
code for generating more involved parity-check matrices is given in Section [6]

Using only Gauss elimination and possibly by swapping columns, H can be brought
into the form
QHP = [Im A] , (1)
where the invertible matrix @ € F3"*™ encodes the steps of the Gauss elimination
(swapping and adding rows of H), P € Fy*" is a permutation matrix to encode the
swapping of columns in H, A € IFS”X’“, and I, is the m x m identity matrix.

A generator matrix for H is a matrix G € FZXk such that HG = 0. According to
we can take G to be

G:P[ﬂ , (2)

since
A

QHG = [I,, A]P7'.P [Ik

] =2A=0 (inF9").
Now G maps message vectors m € F% to codewords ¢ = Gm € F}, i.e., to elements
of the null-space C = Cy = {z € F§ : Hx = 0} of H, which is also termed the set of
codewords or just the code.

The MATLAB code examples in Listings [I] and [2| can be used to generate a very basic
parity-check matrix and to obtain a generator matrix from a given parity-check matrix.

Listing 1: A crude way to obtain a simple parity-check matrix, by just specifying the di-
mensions m and n and a density of non-zero elements in H of at least d € (0, 1).

function H = generate_H(m,n,d)

% H = GENERATE.H (m,n,d)

%

% generate a m by n parity check matrix , where the density 1is
% influenced by the parameter d (between zero and one)
H=sparse(m,n);
H=mod(H,2);

i

10
11
12

while not(all (sum(H1)>=2) && all (sum(H,2)>=2)),
EEMHtabs (sprand(m,n,d)) >0;
HE=mod(H,2);

end

Listing 2: A code example to construct a generator matrix for a given parity-check
matrix. Some consistency checks (e.g., to see if n > m) are omitted.

function [G]=generatormatriz(H);
% function [G]=generatormatrix (H); given a sparse parity check matrix

% H compute a generator matrix G

Hp=H;
[m, n]=size (Hp);

Y%suppose m<n!
colperm=1:n;

for j=1:m,

% find row to put as new row j

i—min (find (Hp(j:m, j)))

if isempty(i);
% do some column swapping!
femin (maxx(find (Hp(j,+)) » 7))
if isempty (%),

disp ([’ problem in row ’> num2str(j,0)]);
continue;

end
temp = Hp(7))
Hp(: , j)=Hp(: ,k);
Hp(:,k)=temp;
temp=colperm (k) ;
colperm (k)=colperm(j);
colperm (j)=temp;

end

% swap rows

% adjust indices!

1=1+7 —1;

it (i=j),
temp = Hp(j,:);
Hp(j,:)=Hp(i,:);
Hp(i,:)=temp;

end % if

% clear out rest of column

K find (Hp(:,j));

K= K(find (K=j5));

if 7 isempty(K),

41
42
43
44
45

[, BN, BN, BN SN
0 N O Ot

ut

t1=full (Hp(j,:));

for k=K,
t2=full (Hp(k,:));
temp=xor (t1,t2);
Hp(k,:)=sparse(temp);

end

end
end % for

% now Hp = [Id-m A]
A= Hp(: ,mt+1lin);

3| %compute G

[b,invperm]=sort (colperm);
G = [A; speye(n—m)];
G=G(invperm ,:);

% consistency check: mod(H+G,2) should give all —zero matrix

end % function

3 Transmission trough an AWGN channel

Now that we can generate codewords for given messages, we still have to map these to
channel symbols, transmit via an Additive White Gaussian Noise (AWGN) channel and
compute log-likelihood ratios (LLRs) afterwards. This is the aim of this section.

An AWGN channel takes as input a real number x and outputs x+ z, where z is drawn
from a N(0,02) normal distribution. Here o is a channel parameter. Transmission of a
vector x € R™ means to consecutively transmit its components. It is assumed that the
noise samples affecting each component are all independent.

3.1 Binary phase shift keying (BPSK)
A given codeword = € C C 3 can be mapped to a vector z € R” via
Ty — :Z’i = (—l)xi . (3)

This procedure is commonly referred to as BPSK.

3.2 The transmission step

We have to fix a channel parameter ¢ > 0. In Matlab, the transmission step is now
very easy, we just use the assignment y = tilde_z + randn(n,1)*xsigma”2, to compute the
vector of received channel symbols y € R"™.

(S L U R R

oo

10
11
12
13

3.3 Computing LLRs
The log-likelihood ratios for each bit are given by

Py;|x; (%i]0)
pyiix, (Will)’

(4)

u; = log

where py;|x, is the density of the conditional probability (z;,y;) — P(Y; < 3| X; = x;).
To compute u;, we actually have to know o, or at least make a guess 6 about o. The
guessing step, which we will omit here, is called estimation. For simplicity we assume
that the receiver knows o.
Substituting the density formulas for the N'(1, %) and N'(—1, 02) distributions into (4)
we obtain

4y

U; = 992 (5)
So at this stage we can encode a k-bit message to an n-bit codeword, transmit it

through a noisy channel (using BPSK) and compute a-priori log-likelihood ratios.

4 The Belief Propagation (BP) algorithm

A detailed descriptionof BP and motivation why this algorithm should do what it does,
can be found in [4]. The implementation presented here is based on the article [6],
which also contains a rather condensed introduction to iterative decoding using belief
propagation. Listing [3]sets up the matrices B and P as well as the structure needed for
the operator S, which is given in Listing [4l Listing [p] implements the BP algorithm as
a dynamical system. The iterate_.BP(T,u) takes a number of iterations T' to perform and
a vector of input LLRs u € R" as arguments. The output is a real n x (7' 4 1) matrix
containing the trajectories of the output LLRs.

Listing 3: Initialization for the main program: Compute the matrices B,P and the
structure for the operator S, which is here also encoded via a matrix (S.)

function [|=H2DS(H)
% H2DS (H)

%
% generate matrices for dynamical system associated to H, i.e., P,
% S_, and q, which are stored as global variables , as well as m and

% n, the dimensions of H

global B P S. g mn

[m,n]=size (H);
¢=nnz(H);

% calculate the amount of nonzero elements

% mneeded for these matrices:

)

15| P=spalloc (¢, ¢,(sum(H,2)—1)’ * sum(H,2
H,1)

S_=spalloc(q,q,(sum(H1)—1) * sum(

E
)5

16

’
17

18|% find the matrix P
19| k=0;

20| for j=1:n,

21 I=find (H(:,j));

22| for z=l:length(I),

23 for y=z+1:length(I),
24 P(ltz, k+y)=1;

25 P(kty, kt+z)=1;

26 end

27| end

28| k=k+length (I);

20| end

30

31|/% find S_ (structure for the nonlinearity S)
32| k=0;

33| for i=1:m,

sa| J=find (H(i,:));

35| for z=1l:length(J),

36 for y=z+1:length(J),
37 S_(ktz, k+y)=1;

38 S,(k—&—y,k—l-x):l;

39 end

40| end

11| k=kt+length (J);

42| end

43

44| % compute matrix B

15| B=spalloc(q,n,q);

6| b=]];

17| for k=1:m,

as| b=[b find (H(k,:))];

19| end

so| B=sparse ([1:q]’,b’ ,ones(q,1),q,n);

Listing 4: The implementation of the nonlinearity S : R? — R?

1| function y = S(z)

2/% S — the nonlinearity in the BP feedback system

3| %

4|% y=S(x) is the vector obtained by applying the atanh
5/% formula to those indices of x corresponding to the ith

6|% row in the global matrix S_
s| global S_ ¢

10| y=ones(q,1);
1| for i=1:¢q,

00 ~ (=] wt - w N —

—= =
= O ©

=
w N

[
IS

15

17
18
19
20
21

for j=find(S_(i,:)),
y(i) = u(i) « tamh(a(5)/2);
end
y=2+atanh (y);

Listing 5: A function to calculate output trajectories for the dynamical system mimick-
ing BP, where u € R™ is the vector of a-priori LLRs and T" € N is the number
of iterations to make

function y = iterate_BP(T,u)

% y = iterate_BP (T,u) — This function implements the BP dynamical
% system; the output trajectory 1is returned for final time T and
% input u. The initial state is always zero.

global B P S_. ¢ nm

x1_k=zeros(q,1);

z2_k=zeros(q,1);
zv1_k_1=zeros(q,1);
z2_k_1=zeros(q,1);

y=zeros (n,T+1);

for ¢t=1:T,
vl _k_1=Pxz2_k+Bxu;
x2_k_1=S(z1_k);
y(:,t)=B" x z2_k + u;
1l k=x1_k_1;
x2_k=x2_k_1;

end

y(:,™41)=B" % z2_k + u;

5 Plotting output trajectories

To visualize the output of the function iterate_BP() from the previous section, we provide
here a routine to generate a plot in the flavor of Figure 2 in [6], see Listing |§|

Listing 6: Plotting output trajectories in color or monochrome

function plot_BP_output(y,mono, filename)

% plot-BP_output (y,mono, filename) — Plot a given output trajectory .
% If mono is supplied (regardless of its value), then plot in

% monochrome, otherwise in color. If in addition a filename 1is

% supplied , save the figure to that file (in EPS format). Saving

% to a file implies that the plot will be monochrome.

global n

10
11
12
13
14
15
16
17
18

20
21
22
23

w

24
25

26

27

28

30

T=size(y); T=T(2)-1;

clf;
if nargin>1,
plot (0:T,y,’ko-") % monochrome
else
plot (0:T,y,’0-") % color
end
grid on;
axis ([0 7 min(min(y))—.5 max(max(y))+.5])
LEGEND=];
for k=1:n,
LEGEND=[LEGEND; strcat(’output’ ,num2str(k))];
end
legend (LEGEND)
xlabel (’time’); ylabel(’LLR’);

if nargin==3,
if isstr(filename),
saveas(gef, filename ,’eps’);
end
end

6 More parity-check matrices

In this section we first introduce so-called regular parity check matrices. These are
a special case of parity-check matrices with a prescribed degree distribution pair. By
the degree distribution we actually refer to the bipartite undirected graph defined by a
parity-check matrix, the so-called Tanner or factor graph, cf. [4].

In fact, it is mostly the degree distribution pair, that determines how the majority
of the possible choices of parity-check matrices for that pair and a given code length
perform [4, p.94], at least for very large block length.

One distinguishes the factor or check node distribution p and the wariable or bit
node distribution \. Together these form a degree distribution pair (A, p), given by the
polynomials

Az) = Zkix"*l (6)
plz) = szmi—l’ (7)

cf. [, p.79], where \; is the fraction of edges that connect to a variable node of degree
i and p; is the fraction of edges that connect to a check node of degree i.

15

6.1 Regular parity-check matrices

Now for a given pair of positive integers (I,7), a reqular (l,r)-code or a regular (I,7)
parity check matrix has A\; =1, A\; =0 for ¢ # [and p, = 1 and p; = 0 for i # r. That is,
the degree is the same for all variable nodes, namely [, and the same for all check nodes,
namely 7.

The interesting thing about regular codes is, that for a fixed pair (I,7) the number ¢
of non-zero entries in H scales linearly with n. Note that m must satisfy [-n = r-m, so
that m is determined by the triple (1,7, n).

6.2 Capacity achieving degree distributions

It has been shown, that certain degree distribution pairs lead to codes with rates per-
forming extremely close to Shannon’s channel capacity, the theoretical limit. Such degree
distributions can be found in [I]. There a code length of n = 107 has been used, with a
randomly constructed parity-check matrix (avoiding short cycles). At a maximal vari-
able degree of 200 and an average check node degree of 12, it could be shown that the
code performed within 0.04 dB of the Shannon limit at a bit error rate of 1076. It is
reported that in this setting for a successful decoding an average of 800-1100 iterations
were needed.

Please note that the provided Matlab code has only been tested with much shorter
block length, e.g., n = 100. To efficiently simulate large block-lengths, some numerical
improvements should be taken, as indicated in [I].

6.3 Generating parity-check matrices with pre-described degree distributions

In Listing |[7] we provide an example Matlab program to generate a parity-check matrix
for a given degree distribution pair.

Listing 7: Generate a parity-check matrix with prescribed degree distribution pair.

function [H, final_column_weights , final_row_weights] =
MacKayNealCreateCode(n,r,v,h)

%

% MacKay Neal algorithm for constructing parity —check matrix

%

% Date created: 3 November 2008

%
% Inputs: code length (n), code rate (r), column weight polynomial
% (v), row weight polynomial (h)

%
% Outputs: n(l—r) x n parity —check matrix (H), generated column

3| %

% and row weight polynomials

%

% Sample parameters for rate —1/2, length 100, (3,6) —regular code
% n = 100; % Code length

% r = 0.5; % Code rate

19
20
21
22
23
24

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

63
64
65
66

% v = [0 0 1.0]; % Column distributions as polynomial
% h = [0 00 00 1.0]; % Row distribution as polynomial
%

% Initialisation

m = floor (nx(1—1r));
H = zeros ([m,n]);
alpha = [], % alpha will contain the column weight for
% each column

for ¢ = 1l:length(v)

for j = 1:(f100r(v(i)>kn)) % always underfill and then add extras

% later
alpha = [alpha i];

end
end
while (length(alpha) = n) % fill out alpha to the appropriate length

alpha = [alpha i];
end
beta = [], % beta will contain the row weight for each row
for i=1:length(h)

for j=1:(f100r(h(i)*m)) % always underfill and then add extras

% later
beta = [beta,i];

end
end
while (length(beta) "= m) % fill out beta to the appropriate

% length

beta = [beta i];
end
% Construction

for i« = 1:n
% construct column i
c =[]
beta_temp = beta;
for j = 1l:alpha(i)
temp_row = randint(1,1,[1,m]);
% We rule out choosing the same row twice for one column by
% indicating a selection in beta_temp with a —10. We also
% select a row that has yet to equal its desired row weight IF
% POSSIBLE . However , since we insist on getting the correct

% column weight , we will end up with some rows having one too
% many entries . C’est la guerre. The actual row weights thus
% constructed are calculated below. You should check that

% they 're not too far off ...
while (((beta-temp(temp_row) = 0) &
(max(beta_temp) > 0)) ||
((beta_temp (temp_row) <= —1)))

10

67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

temp_row = mod(temp_row+1,m)+1;

end

c = [c temp_row];

beta_temp (temp_row) = —10;
end

% decrement entries in beta
for k = 1l:length(c)

beta(c(k)) = beta(c(k))—1;
end

% populate H
for j = 1l:alpha(i)
Hc(j).i) = 1;
end
end

% Calculate actual column distribution
column_weights = H'xones(m,1);
for ¢ = 1:max(column_weights)
count = 0;
for j = l:length(column_weights)
if (column_weights(j)==1)
count = count + 1;
end
end
final_column_weights (i) = count/length(column_weights);
end

% Calculate actual row weights
row_weights = Hxones(n,1);
for i = l:max(row_-weights)

count = 0;

for j = l:length(row_weights)

if (row_weights(j)==1)
count = count + 1;
end
end
final_row_weights (i) = count/length(row_weights);
end
7 Example

In Listing [§] we show some exemplary use of the provided Matlab functions. Suppose we

would like to generate a simple random 10 x 15 parity-check matrix, see what it looks

like, and compute a generator matrix. Here we have n = 15, m = 10, and hence k = 5.
In Figure [7] we see the structure of these two matrices.

11

¥

o0 ~ =] ot - W

0

Now let us generate a random message vector m € FJ, encode this message to a
codeword z, and transmit it via an AWGN channel with standard deviation o = 0.5.

Now we could base a hard decision on this vector u and see if that yields a codeword,
i.e., in Matlab we could try ~any(mod(Hx(double(u<0)),2)), which should return 1 if we
have a codeword. We may find at this stage that we do not have found a valid code-
word yet. So let us perform belief propagation decoding, using the dynamical system
implementation given in Section [4

Listing 8: Generating a parity-check and a generator matrix as in Section [7} Exercise
the encoding, channel transmission and decoding.

KTV Te TV VT Ve Ve T Ve Se Ve oA Ve Ve Ve Ve Ve he Ve Ve Ve Vo e Voo Ve e Fe Ve Ve ho T Ve Ve Ve Ve Ve Ve Voo e Ve Fe Ve Ve Ve e Ve oo
%

% Setup a repeat 10—code.

%

TV VSTV TSV VeV Te VeV Ve Ve T Ve Ve Vo hoFe Ve Ve Voo Te T Vo Ve Voo Ve Ve Ve Vo Vo Te Ve Vo o Vo Ve Ve Ve Ve Vo ho T Ve e o o Te Ve Ve Voo

n=10; m=n—1; H=spalloc(n—1,n,2x(n—1));
for i=1:n—1,

H(i,i)=1,
H(i,i+1)=1;
end
G=generatormatriz(H);
spy (H) % see what H looks like
spy (G) % see what G looks like

5| H2DS(H); % setup for the BP algorithm

V7676767676 7070%6 7676 767670767070 76 76767070/ 0 7o 7070 /070 0 /o o 7o 70 Ve Vo 0o o 7o 7o o Vo o Vo o 7o To o Vo o fo o o o o o oo

%

% Alternatively: setup a random length —15 code of dimension 5.
%

V767670707676 76 7670707676 7670)0 /6 /0 6T/ /o /o Vo VoV /o /676 oV 0 /0 0 Vo Vo6 /o /o Vo o Vo /o /o o oV /e /o o Vo Vo /o o o o o o /o Vo

H=generate_H(10,15,.05); % 15-10 is 5 as we all know
%%

5/% at this stage H might not have full rank, in that case we just

% repeat this step

%%

global H

spy (H) % see what H looks like
saveas(gef, ’H.eps’ ,’eps’);

G=generatormatriz(H);

spy (G) % see what G looks like
saveas(gef,’G.eps’ ,’eps’);

HQDS(H); % setup for the BP algorithm

TV VeV V6 V0 V6 o V0 V6 Vo Vo Vo Vo Vo o Vo o fo T o Jo o o o Vo o Jo o o o Vo o o Vo o Vo Vo o o Vo o o o o Vo o o Vo Vo o Vo Vo 6oV o

12

%

% Now generate , encode and channel code a random message

%

6777776767676 767676767676 7676767676766 Ve Vo Vo Fo Jo Jo Fo fo o o /o /o /o /o 6 Vo Vo Vo V0 V0 /0 /0 /070 76 76 7o Ve 7o Vo Te Vo Fo Vo Vo Vo Vo To

[m,n]=size (H); k=n—m;
message=double(rand (k,1) >0.5); % a k—vector of 0s and 1s
r=Gxmessage; % x is now an n—vector of 0s and 1ls (a codeword)

5 l’_tildGprSk(:I)); % make that 1s and —1s (codeword in channel symbols)

iscodeword(hard_decision(xz_tilde)) % everything OK up to here?

TV676 7676777767676 76767776 o 7o 7o 7o 7o Ve Ve o Vo o To To Ve Vo o Jo o To To Ve o o Jo Fo Fo To e e e Vo Jo Fo To Vo Ve e Vo o Fo o Vo Ve e To
%

% Simulate transmission through an AWGN channel. Actually , we
% repeat as often as needed until the channel corrupts the

% transmitted codeword, so that we will have the opportunity to
% employ the iterative decoder .

%

%

% REPEAT FROM HERE TO VIEW PLOTS OF DIFFERENT TRAJECTORIES

%

TV 76 7676777767676 767670766 6 7o 76 7o 7o Ve Ve o 7o o o To e Fe Jo Jo o o o Ve o o Jo Jo Fo o Ve e o Vo Jo Fo o Vo Ve e Yo Jo Fo To Vo Ve e To

sigma=0.5; % the channel parameter

% generate a channel output which at first is not a codeword:
y=z_tilde+randn(n,1)* sigma”2; % the channel adds the noise
TRIES=100; t=0;
while iscodeword(hard_decision(y)) && t<TRIES,
y=xz_-tilde+randn(n,l)* sigma;
t=t+1;
end

TI6T676 76770777676 7070707076 7o 7o 7o 70 VeV o Vo Fo To 7o Ve Vo o fo o Fo o Ve o o fo o Fo o oo o fo o Fo o o Vo e Fo o Fo o o Vo e o
%
% Compute the a—priori log—likelihood ratios (u) and perfrom T

% iterations of the BP algorithm (actually , in our implementation ,
% we do T HALF—iterations .
%

%% 0/070. 0%%%%%%%%%%%%%%%%%%%%%%%%%% 0/0/0/0/0/0/0
T=50; % (half —)iterations for BP to perform
u=4xy/(2x sigma”~2); % compute a—posteriori LLRs

if Tany(mod(Hxdouble(y<0),2)),
’y already represents a codeword’

13

87
88
89
90
91
92
93
94
95
96
97
98

clf;
else
’performing BP’
Y=iterate_BP(T,u); % that means T (half —)iterations
for k=1:T,
if “any(mod(Hxdouble(Y(:,k)<0),2)),
strcat(’found a codeword at iteration

> num?2str(k))

break;
end
end
plot (0:7,Y,70-")
end
0
)
2 o o o o
.
0 4) o o
1- e B e o
2r - 6 ® °
. o o
3r -
8 . e o
4r B
. .
5 -
10 e o o
6 Y i
.
7 - 1ok .
8r . . - °
9+ - 14 °
10 - .
1 I I I I I I I 16
0 2 4 6 8 10 12 14 16 0 2 4 6
nz =60 nz=29

Figure 1: The graphical output of Listing [t H on the left and G on the right.

8 Remarks on numerical precision

In the graphical output generated in the previous section we observe that some trajecto-
ries seem to cease to exist and then possibly reappear later on. This effect is caused by
round-off errors due to the numerical precision of the computations in Matlab. For very
large arguments the tanh-function returns 1, and atanh(1) = co. In theory though, finite
arguments always give finite outputs, but number representation limits Matlab in actu-
ally producing accurate results after sometimes only a few iterations. Countermeasures
employed, e.g., in [3], include to apply some saturation function after each iteration to
the log-likelihood ratios, so that they do not grow unboundedly.

14

References

1]

S.-Y. Chung, G. D. Forney, T. J. Richardson, and R. L. Urbanke. On the design
of low-density parity-check codes within 0.0045 dB of the Shannon limit. [EEE
Communications Letters, 5(2):58-60, Feb. 2001.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47(2):498-519, 2001.

R. M. Neal. Software for Low Density Parity Check (LDPC) codes. online, 2001.
http://www.cs.toronto.edu/ radford/software-online.html.

T. Richardson and R. Urbanke. Modern Coding Theory. Cambridge University Press,
New York, 2008.

B. S. Riiffer and C. M. Kellett. Example Matlab code to implement
Belief Propagation as a Dynamical System, Nov. 2008. Available at
http://sigpromu.org/systemanalysis.

B. S. Riiffer, C. M. Kellett, P. M. Dower, and S. R. Weller. Belief Propagation as
a Dynamical System: The Linear Case and Open Problems. Submitted, Nov. 2008.
Preprint available at http://sigpromu.org/systemanalysis/publications.html.

15

	Introduction
	Parity-Check and generator matrices
	Transmission trough an AWGN channel
	Binary phase shift keying (BPSK)
	The transmission step
	Computing LLRs

	The Belief Propagation (BP) algorithm
	Plotting output trajectories
	More parity-check matrices
	Regular parity-check matrices
	Capacity achieving degree distributions
	Generating parity-check matrices with pre-described degree distributions

	Example
	Remarks on numerical precision

